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A B S T R A C T

Galaxy clusters assemble hierarchically through mergers whose shocks, turbulence,
and core disruption leave rich thermal (X-ray) and non-thermal (radio) imprints.
Inferring the underlying merger parameters, e.g., time since/to pericenter, colli-
sion velocity, mass ratio, pericenter distance, and component masses is scientifi-
cally valuable but much of the relevant information is lost or distorted in observa-
tions. Moreover, observation provide only single-epoch snapshots rather than time-
resolved tracks over Gyr, making reliable ground-truth labels scarce. We therefore
adopt a simulation-based inference approach, using the TNG–Cluster simulation
and its 352 zoom-in halos in three orthogonal projections across redshifts 0 ⩽ z ⩽ 1

to create intrinsic maps and their merger parameters. Building on these data, this
thesis develops a framework that tests whether merger properties can be reliably
inferred solely from images. First, we train SimCLR, a contrastive learning frame-
work, separately on intrinsic X-ray, radio, and joint X-ray+radio maps to learn
morphology-aware representations that distill high-resolution maps into feature
vectors that capture the relevant structure. A physics-aware augmentation suite
(rotations, flips, Gaussian blur, additive noise, and affine zoom/shift) was also de-
signed and used for training the SimCLR to promote invariance to observing nui-
sances without erasing merger signatures. Second, a conditional invertible neural
network (cINN) with rational–quadratic spline couplings and a mixture-of-experts
partition in representation space, enables inference of the p(x | c), where x is the
merger parameter and c is the conditioner. Two conditioning modes are evaluated:
(i) representation-conditioned, where c is the learned embedding of (X-ray, radio,
or joint maps); and (ii) scalar-conditioned, where c is a vector of scalar observable
parameters that are fed directly to the cINN, without the preceding contrastive
learning step. Across four conditioners schemes; scalars, X-ray, radio, and joint X-
ray+radio maps, the method is evaluated on both last- and next-merger properties.
Conditioning on the radio maps delivers the most precise and accurate posteriors
for last merger, with typical maximum a posteriori (MAP) relative error ranges
of: collision time ∼ [−5, 10]%, velocity ⩽ ±1%, main cluster’s M500c, and subclus-
ter mass ∼ ±0.5%, and pericenter distance ∼ ±3%, reflecting the close coupling of
radio emission and its geometry to recent cluster dynamics. Conditioning on X-
ray maps remains informative, but produces broader posteriors and larger scatter
in MAP estimates. Joint conditioning is consistently intermediate; it narrows and
stabilizes inferences relative to X-ray alone, but it does not surpass radio condi-
tioning. Conditioning on scalar observable properties on the other hand, performs
competitively only for collision time and the main cluster mass, while elsewhere it
is neither accurate nor precise, and exhibits heteroscedastic dispersions, pointing
to the information bottle neck that could be introduced by only using scalar observ-
able parameters. In all cases, the cINN not only recovers ΛCDM-consistent cross-
parameter correlations, but also could use the learned correlations to propagate
information from well constrained merger properties to weaker ones. Forecasts
for the next merger mirror the last-merger performance with physically expected
weaker precision (most visible for timing). Methodologically, this thesis demon-
strates that label-free contrastive representation of maps can be used directly as
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cINN condition enabling survey-scale, uncertainty-aware inference of galaxy clus-
ter’s assembly from imaging data alone. Practically, the results advocate prioritiz-
ing high-fidelity radio imaging. In future research, this framework can be extended
toward instrument-aware mock observables for simulation-to-real transfer, multi-
resolution fusion including SZ and weak-lensing, and scalable pipelines suitable
for eROSITA, Chandra, XMM paired with LOFAR, MeerKAT, or VLA.

Z U S A M M E N FA S S U N G

Galaxienhaufen entstehen hierarchisch durch Verschmelzungen, deren Stoßwellen,
Turbulenzen und Kernstörungen reiche thermische (Röntgen) und nicht-thermische
(Radio) Signaturen hinterlassen. Die zugrunde liegenden Parameter solcher Ver-
schmelzungen, z. B. die Zeit seit/zur Perizentrenpassage, Kollisionsgeschwindig-
keit, Massenverhältnis, Perizentrenabstand und Komponentenmassen, zu bestim-
men, ist wissenschaftlich wertvoll. Doch ein Großteil der relevanten Informationen
geht in Beobachtungen verloren oder wird verzerrt. Zudem liefern Beobachtungen
nur Momentaufnahmen zu einzelnen Zeitpunkten statt zeitaufgelöster Entwicklun-
gen über Gigajahre hinweg, wodurch verlässliche Ground-Truth-Labels selten sind.
Wir verfolgen daher einen simulationsbasierten Inferenzansatz, indem wir TNG-
Cluster Simulationen und deren 352 Zoom-in-Halos in drei orthogonalen Projektio-
nen über Rotverschiebungen 0 ⩽ z ⩽ 1 verwenden, um intrinsische Karten und die
zugehörigen Verschmelzungsparameter zu erzeugen. Aufbauend auf diesen Daten
entwickelt diese Arbeit einen durchgängigen, simulationsbasierten Ansatz, um aus
Bildern kalibrierte Posteriorverteilungen über die Fusionsphysik abzuleiten. Zu-
nächst trainieren wir SimCLR, ein Framework für kontrastives Lernen, getrennt
auf Röntgen-, Radio- und kombinierte Röntgen+Radio-Karten, um morphologie-
bewusste Repräsentationen zu erlernen, die hochaufgelöste Karten in Merkmals-
vektoren verdichten, welche die relevante Struktur erfassen. Ein physikbewusstes
Augmentationspaket (Rotationen, Spiegelungen, Gaußsche Unschärfe, additives
Rauschen sowie affine Zoom-/Shift-Operationen; bei kombinierten Karten kanal-
konsistent angewendet) fördert Invarianz gegenüber beobachtungsbedingten Stö-
reinflüssen, ohne Fusionssignaturen zu verwischen. Anschließend ermöglicht ein
bedingtes invertierbares neuronales Netzwerk (cINN) mit rational–quadratischen
Spline-Kopplungen und einer Mixture-of-Experts-Aufteilung im Repräsentations-
raum die Inferenz von p(x | c), wobei x den Fusionsparameter und c den Condi-
tioner bezeichnet. Wir betrachten zwei Modi der Konditionierung: (i) Repräsenta-
tionsbasiert, bei dem c die erlernte Einbettung der (Röntgen-, Radio- oder kom-
binierten Karten) ist; und (ii) Skalarbasiert, bei dem c ein Vektor skalierbarer be-
obachtbarer Parameter ist, der direkt in das cINN eingespeist wird, ohne kontras-
tives Lernen (den ersten Schritt). Über vier Conditioner-Varianten Skalare, Rönt-
gen, Radio und kombinierte Röntgen+Radio-Karten, wird die Methode sowohl für
vergangene als auch für zukünftige Verschmelzungseigenschaften evaluiert. Radio-
Konditionierung liefert die präzisesten und genauesten Posteriorverteilungen, mit
typischen relativen Maximum a Posteriori (MAP)-Fehlerbereichen von Kollisions-
zeit ∼ [−5, 10]%, Geschwindigkeit ⩽ ±1%, Hauptcluster-M500c, Subcluster-Masse
∼ ±0,5% und Perizentrenabstand ∼ ±3%. Dies spiegelt die enge Kopplung von
Radioemission und ihrer Geometrie an die jüngste Dynamik von Clustern wider.
Röntgen-Konditionierung bleibt informativ, führt jedoch zu breiteren Posterioren
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und größerer Streuung der MAP-Schätzungen. Kombinierte Konditionierung liegt
durchgehend dazwischen: Sie verengt und stabilisiert die Inferenz im Vergleich
zu Röntgen allein, übertrifft aber Radio nicht. Skalarkonditionierung hingegen ist
nur bei Kollisionszeit und Hauptcluster-Masse konkurrenzfähig; ansonsten ist sie
weder genau noch präzise und zeigt heteroskedastische Streuungen, was auf den
Informationsverlust hinweist, der durch die ausschließliche Nutzung skalarer Be-
obachtungsparameter entstehen kann. In allen Fällen rekonstruiert das cINN nicht
nur ΛCDM-konsistente Kreuzparameterkorrelationen, sondern kann die gelern-
ten Zusammenhänge auch nutzen, um Informationen von gut bestimmbaren zu
schwächer bestimmbaren Fusionsparametern zu propagieren. Vorhersagen für die
nächste Verschmelzung spiegeln die Ergebnisse für vergangene Fusionen wider,
jedoch mit der erwarteten, physikalisch begründeten geringeren Präzision (am
deutlichsten bei der Zeitabschätzung). Methodisch zeigt diese Arbeit, dass kon-
trastive, labelfreie Repräsentationen, direkt als cINN-Conditioner genutzt, unsi-
cherheitsbewusste Inferenz der Galaxienhaufen-Entstehung aus reinen Bilddaten
im Survey-Maßstab ermöglichen. Praktisch sprechen die Ergebnisse dafür, hoch-
qualitative Radioabbildungen zu priorisieren. Zukünftige Forschung kann diesen
Rahmen auf instrumentenbewusste Mock-Beobachtungen für Sim-to-Real-Transfer,
Multi-Resolution-Fusion inklusive SZ- und Weak-Lensing-Daten sowie skalierbare
Pipelines für eROSITA, Chandra, XMM in Kombination mit LOFAR, MeerKAT
oder VLA erweitern.
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Figure 1 The galaxy cluster Abell 2744. Left: optical (Subaru BRz;
Medezinski et al. 2016) view of the cluster. White linearly
spaced contours represent the mass surface density (κ =

Σ/Σcr) from weak-lensing studies [95, 105]. Middle: Chan-
dra X-ray emission (0.5–2.0 keV band) from the hot thermal
ICM (blue). Right: 1–4 GHz VLA radio image (red) tracing
cosmic rays and magnetic fields. Figure adapted from van
Weeren et al. [179]. 10

Figure 2 Top: Bullet Cluster (1E 0657−56): Chandra X-ray surface bright-
ness with a bow shock (right) and a cool “bullet” core, with
weak-lensing mass contours offset from the X-ray gas, il-
lustrating the collisionless nature of dark matter. Image
is from Clowe et al. [35]. Bottom: The “Toothbrush” relic
(1RXS J0603.3+4214): deep GMRT/LOFAR/VLA radio imag-
ing of the linear Mpc-scale relic; the bright ridge and fainter
bristles/streams trace a merger shock and ordered magnetic
fields. Image taken from Rajpurohit et al. [135]. 24

Figure 3 Schematic overview of the thesis workflow. Starting from
simulated galaxy cluster properties derived from TNG-Cluster,
two approaches are pursued to infer merger properties: (i)
a direct route using scalar observables as cINN inputs, and
(ii) an image-driven route where contrastive learning com-
presses X-ray, radio, or combined X-ray+radio maps into
morphology-aware representations for conditioning the cINN. 50

Figure 4 Cluster mass function for primary zoom targets of TNG-
Cluster simulation (blue) stacked on top of the TNG300

across z=0, 0.5, 1, 2, with the bin width of 0.1 dex. TNG-
Cluster supplies the vast majority of M200c ⩾ 1015M⊙ sys-
tems, enabling ensemble analyses of rare mergers. Redshift
panels visualize the progenitor-biased nature of the z = 0-
selected sample at earlier times, a caveat we account for
when presenting evolutionary trends. 60

Figure 5 Baryon and phase fractions vs. halo mass at z=0. Com-
ponent masses within R200c, normalized by fbM200c, for
TNG300-1 (filled points) and TNG-Cluster (open points). Lines
show running medians in logarithmic mass bins. The gas
fraction increases with halo mass and approaches the cos-
mic value at the top end, the stellar fraction declines, and
the hot phase dominates the ICM budget across the cluster
regime. 61
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Figure 6 ICM radial structure at z = 0. (a) Normalized radial tem-
perature profiles ⟨T⟩(r) and (b) X-ray luminosity profiles
LX(r) versus r/R200c for TNG-Cluster zoom-in halos col-
ored based on the M200c. More massive halos are hotter
and more X-ray luminous at fixed scaled radius; outside the
core, profiles decline gently with clear mass ordering, while
the inner ⩽ 0.2R200c shows substantial diversity indicative
of cool-core vs. non–cool-core states. In panel (b), the steep
central rise and enhanced small-scale fluctuations reflect the
LX ∝ ρ2T1/2 dependence and substructure/sloshing. 64

Figure 7 Halo 0 at z = 0: emission structure within R500c. Top:
mean ⟨log T⟩ (K). Bottom: log X-ray surface brightness from
the free–free Bremstrehlung (Eq. 8) in erg s−1 kpc−2. The
field spans [−R500c,+R500c] in both directions and is cen-
tered on the potential minimum. The bright core and gentle
outer gradient are evident in X-rays; with small asymme-
tries and substructures appearing in both panels. 65

Figure 8 Global ICM scaling at z=0. Top: mass–weighted mean tem-
perature within R200c vs. M200c. Bottom: bolometric X-ray
luminosity (Eq. 8) within R200c vs. M200c. The T–M rela-
tion is tight, while LX–M shows larger intrinsic scatter ow-
ing to the ρ2 dependence that emphasizes core structure,
clumping, and recent dynamical activity [84, 133]. 66

Figure 9 BCG mass components vs. halo mass (M200c) at z=0. For
each primary zoom in galaxy cluster in TNG-Cluster sim-
ulation at z = 0, we select the central galaxy and plot its
bound total (purple), BH (dark blue), gas (light blue), dark
matter (green), and stellar masses (yellow) against M200c.
Thick lines show running medians. 68

Figure 10 Subhalo mass ratio versus offset magnitude. Points show
halos; M12 is the ratio of the most– to second–most–massive
subhalo bound masses within the halo, and the offset mag-
nitude is defined as in equation 9 following Ayromlou et
al. [8]. Background shading indicates the relaxation cut at
xoff = 0.1 (purple: relaxed; pink: non–relaxed). Systems
with two comparably massive subhalos (low M12) prefer-
entially show large offsets, while halos with a dominant
central (high M12) concentrate at small offsets, with broad
intrinsic scatter. 69

Figure 11 Cool–core diagnostics Distribution. Distributions of the
six CC indicators with SCC (sky blue), WCC (purple), and
NCC (pink) regions shaded using the thresholds listed in
section 8.4 for the 352 primary zoom-in halos at z = 0. The
diagnostics based on profiles (K0, tcool, ne, α) and those
based on imaging (cphys, cscaled) give a consistent partition
of the sample into SCC/WCC/NCC, with differences re-
flecting sensitivity to core size and projection. 71
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Figure 12 Event demographics. Host mass at collision, M500c, ver-
sus the subcluster’s pre-pericenter peak mass Msub for all
recorded mergers in the Lee et al. [91] catalog. Each point
illustrates one merger with its color pointing to the redshift
at which the collision has happened. 73

Figure 13 Merger measurements. Top: separation D(t) for the main
cluster and subcluster with the first curve marking the first
pericenter where the quadratic function is fitted. The ver-
tical pink dashed line marks the closest snapshot to tperi,
yielding sub-snapshot tperi and Dperi. Bottom: bound masses
of the main and sub-cluster versus TNG-Cluster snapshots;
the collider’s pre-pericenter maximum Msub,peak (purple dot-
ted line) defines the impacting mass and sets the reference
snapshot for the mass ratio (pink dashed line again marks
tperi). 74

Figure 14 Merging vs. non–merging halos across snapshots. Step–histograms
of halo mass at eight outputs (snapshots 99 to 50) split
into systems whose last recorded merger occurred before
that snapshot (MM; sky blue) and those without a prior
merger in our window (NM; pink). Bins and x–limits are
shared across snapshots; the bottom–right panel aggregates
all outputs. Counts for MM and NM are annotated in each
axis. 81

Figure 15 Mean rank of each observable, computed from the permu-
tation sensitivity matrix by ranking features within each tar-
get and averaging across targets. The top eight features
(smallest mean ranks) are selected as the conditioning set
for the cINN. 89

Figure 16 Permutation sensitivity for a selected set of observables (rows)
across all targets (columns). Color encodes log10(|∆MAE|)
on the test split; larger values indicate a larger degradation
in accuracy when that observable is destroyed, hence higher
importance for that target. 89

Figure 17 Conditional posterior distribution for 15 randomly selected
test galaxy clusters (rows) out of 203, across all target merger
parameters (columns). Gray: prior distribution over the test
split (KDE). Blue: predicted posterior KDE for each galaxy
cluster predicted by the cINN. Gold: MAP estimate. Red:
ground truth from TNG-Cluster. 104
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Figure 18 Posterior versus ground truth per target (merger parame-
ter) on the 203 test galaxy clusters. Each panel shows a 2D
histogram of posterior samples (vertical) binned on the bins
of ground-truth (horizontal), with shared logarithmic color
scale. White line: y = x. Black solid line: posterior median
per ground-truth bin; black dashed lines: 10-90% posterior
quantiles. A well-calibrated, accurate model concentrates
mass near the diagonal with narrow quantile bands. Here
we use B = 15 truth bins and draw nsam = 500 posterior
samples per test object. 107

Figure 19 Per-target (merger parameter) MAP accuracy (top) and rel-
ative error (bottom) over the 203 test clusters. Top: scatter
of MAP vs. truth with y = x (ideal), plus median (solid) and
10–90% (dashed) MAP within truth bins. Bottom: relative
error ∆ = 100(MAP − Truth)/Truth vs. truth with the same
bin-wise summaries. Tight bands near the diagonal/zero
indicate accurate, well-calibrated predictions; curvature or
wide bands reveal bias. 107

Figure 20 Corner plot across all merger parameters of the 203 test
galaxy clusters. Diagonal: marginal KDEs of posterior (blue),
MAP distribution (gold), and ground truth (red). Lower
triangle: pooled posterior samples (200 posteriors for each
test sample)(blue), MAPs (gold), and truths (red) for each
test object. The plot exposes learned cross–target structure,
MAP accuracy, and any residual multi–modality. 109

Figure 21 ∆-error scatter plot comparing the prediction error of the
deterministic MLP with the cINN maximum a posteriori
(MAP) estimates. Each subplot corresponds to one merger
parameter. The x-axis shows the ground truth value, while
the y-axis shows ∆ε = |ŷMLP − y|− |ŷMAP − y|. Values above
the pink dashed zero line indicate improved accuracy of
cINN MAP estimates compared to the MLP. The percent-
age of test points with ∆ε > 0 is annotated on top of each
subplot. 110

Figure 22 Scalar–conditioned posteriors for the next merger (15/193

test clusters; construction identical to Fig. 17). Compared
to the last–merger case, posteriors are broader—most visi-
bly for Collision Time—yet MAPs remain close to the truths
where contraction is strong (for Collision Time, Collision
Velocity and Main Cluster M500c). 111

Figure 23 Next–merger: posterior vs. truth per target (scalar condi-
tioning) across 193 test clusters. Construction as in Fig. 18

with B = 15 and nsam = 500. Medians (solid) and 10–90%
bands (dashed) remain close to y = x, with broader bands
than the last–merger case—most visibly for Collision Time. 113
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near y = x (top) and near ∆ = 0 (bottom) for Collision Time,
velocity, and main–cluster mass; envelopes are broader than
for the last–merger, consistent with increased forecasting
uncertainty. 113
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Figure 27 Grid visualization of the learned representation space of X-
ray map representation space. Each image corresponds to a
UMAP-projected point in the representation space. Clusters
with similar morphological features tend to occupy adjacent
cells, revealing locally smooth organization in the represen-
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tion encodes global scaling relations, despite the model be-
ing trained without access to labels. 129

Figure 30 UMAP projection of X-ray representation space, colored by
binned mean values of ICM core and dynamical proper-
ties (Table 5). Clear trends, show that the representation
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mation. 130
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List of Figures xv

Figure 32 UMAP projection of X-ray representation space, colored by
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domly selected test clusters (rows) from 620 test samples,
across all target merger parameters (columns). Gray: prior
KDE over the test split; blue: posterior KDE conditioned
on the embedding; gold: MAP estimate (vertical line); red:
ground truth (vertical line). Construction mirrors Figure 17,
now with the learned SimCLR representation space of X-ray
maps as the conditioner. 138
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sents the ideal case of zero relative error. Median lie near
y = x (top) and near ∆ = 0 (bottom), with tight 10–90% en-
velopes. The conditioning input, is the representation space
learned via SimCLR on intrinsic X-ray maps as explained in
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I N T R O D U C T I O N





1
G A L A X Y C L U S T E R S A S C O S M O L O G Y A N D A S T R O P H Y S I C S
L A B O R AT O R I E S

1.1 groups , galaxy clusters and super clusters

Definitions and Their Difference in Mass and Size

In observational and extragalactic astrophysics, galaxy groups, galaxy clusters, and
superclusters serve as distinct yet connected systems within the hierarchy of large-
scale cosmic structures. Their definitions primarily depends on the number of
galaxies within, gravitational binding, equilibrium states, mass, and other phys-
ical scales.

Galaxy Groups: Galaxy groups are typically the smallest gravitationally bound
systems of galaxies, often comprising tens of galaxies. The Local Group, containing
prominent galaxies such as the Milky Way, Andromeda (M31), and approximately
50 other galaxies[96]. Galaxy groups generally exhibit total masses ranging from
approximately 1012.5 to 1014M⊙, with radii spanning about 0.5 to 1 megaparsecs
(Mpc) [109]. Given their relatively shallow gravitational potential wells, groups
often display considerable internal galaxy interactions, frequent mergers, and tidal
effects are common. These sytems are often dynamically complex states rather than
perfect equilibrium [34].

Galaxy Clusters: Galaxy clusters are the largest gravitationally bound and virial-
ized structures in the Universe, hosting hundreds to thousands of galaxies embed-
ded in an extensive, hot, diffuse intracluster medium (ICM). Their gravitationally
binding mass typically ranges between 1014 and 1015 M⊙, with radii commonly
extending from 1 to 5 Mpc. Clusters are deep gravitational potential wells capa-
ble of heating their intracluster gas to temperatures often exceeding 107 Kelvin,
which causes them to be luminous in X-ray wavelengths. Galaxy clusters gener-
ally approach hydrostatic equilibrium, though disturbances such as mergers and
accretion events frequently perturb their internal structure [84].

Superclusters: At an even larger scale, superclusters constitute collections of
multiple galaxy groups and clusters, spanning immense spatial extents; tens to
hundreds of megaparsecs. Unlike virialized galaxy clusters, superclusters typi-
cally are not gravitationally bound structures and are instead in the process of
continuous expansion, influenced significantly by the Universe’s overall Hubble
flow. As such, they exhibit complex dynamical states, characterized by relatively
weaker gravitational binding and ongoing structure formation processes [45]. The
Local Supercluster, also known as the Virgo Supercluster, exemplifies this category,
comprising numerous galaxy groups and clusters, including our Local Group and
the Virgo Cluster. Superclusters are vital for investigating the large-scale web-like
structure of the Universe, which includes cosmic filaments and expansive voids
[156].

The transitions between these categories are not always sharp, as intermediate
system exist (e.g, poor clusters or rich groups), and environmental processes can
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blur the boundaries. However, the above distinctions hint us toward a hierarchical
structure of the universe.

Hierarchical Structure of the Universe and Their Place in the Cosmic Web

The Universe exhibits a hierarchical structure, characterized by complex networks
of matter distributions that evolve through gravitational interactions. At large
scales, this structure is collectively known as the cosmic web, a network composed
primarily of galaxies, galaxy groups, galaxy clusters, filaments, sheets, and voids,
intricately connected by gravitational interactions and cosmological evolution pro-
cesses.

Hierarchical Formation: According to the prevailing Λ Cold Dark Matter (ΛCDM)
cosmological model, structure formation proceeds in a hierarchical manner, mean-
ing smaller objects form first and subsequently merge to form larger and more mas-
sive structures [171]. Initial density fluctuations in the early Universe, imprinted
during inflation, serve as seeds for this hierarchical buildup. Over cosmic time,
these fluctuations grow via gravitational instability, collapsing first into dark mat-
ter halos and subsequently attracting baryonic matter to form galaxies and larger
cosmic structures [171].

The large-scale structure can be visualized as a web-like arrangement of matter,
the cosmic web, containing several distinct features:

• Filaments: These elongated structures connect galaxy groups and clusters,
containing the majority of baryonic matter outside clusters. Filaments are
characterized by their dense environments, facilitating galaxy growth and
migration towards more massive gravitational potentials.

• Galaxy Clusters and Groups: These are nodes within the cosmic web where fila-
ments intersect, forming the densest and most gravitationally bound regions.
Clusters and groups represent the largest structures in dynamical equilib-
rium.

• Voids: These are expansive, low-density regions encompassing the majority
of cosmic volume, characterized by significantly fewer galaxies. Voids ex-
pand faster due to lower gravitational attraction, shaping the surrounding
filaments and sheets.

Galaxy clusters and groups hold crucial positions as nodes within the cosmic
web, marking the peaks in the cosmic density field. They act as gravitational at-
tractors, driving the flow of matter along filaments, which contributes directly to
their growth. Understanding galaxy clusters and groups is critical because they
encapsulate the processes of hierarchical merging, gravitational interactions, and
baryonic physics in a relatively confined yet massive environment [17].

Galaxy clusters, therefore, represent the culmination of hierarchical structure for-
mation. Their positions within the cosmic web, at the center of cosmic filaments,
make them invaluable laboratories for testing cosmological models, probing dark
matter properties, and studying baryonic physics processes such as galaxy forma-
tion, gas dynamics, and feedback mechanisms. They also provide observational
benchmarks to refine cosmological simulations, ultimately enhancing our under-
standing of the Universe’s evolution [171].
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Why Clusters are Important: Largest Gravitationally Bound Systems, Key for Structure
Formation, and Cosmology

Galaxy clusters are exceptionally significant astrophysical structures due to their
unique physical characteristics and their essential role in cosmological studies.
Their importance spans multiple dimensions, including astrophysics, cosmology,
and galaxy evolution, and is primarily due to their status as the largest gravitation-
ally bound systems in the Universe.

Largest Gravitationally Bound Systems: Galaxy clusters represent the most
massive and extensive gravitationally bound objects known in the cosmos, with
masses ranging typically from 1014 to 1015 solar masses M⊙. This immense grav-
itational binding power creates a deep gravitational potential well, enabling clus-
ters to retain vast amounts of hot intracluster medium (ICM) gas and thousands
of galaxies within their volume. Such gravitational dominance enables clusters to
be stable, quasi-equilibrium systems that offer valuable insights into gravitational
dynamics and dark matter properties [142].

Key Role in Structure Formation: Clusters serve as critical probes in studying hi-
erarchical structure formation. According to the Λ Cold Dark Matter (ΛCDM) cos-
mological framework, large-scale structures form hierarchically from initial small
density perturbations in the early Universe. Galaxy clusters are thus endpoints
of this hierarchical process, formed via successive mergers and accretion events
involving smaller halos and galaxy groups. Analyzing clusters helps astronomers
reconstruct how cosmic structures evolved over time, offering direct tests of theo-
retical predictions [159, 171].

Cosmological Laboratories: Galaxy clusters are potent cosmological tools be-
cause their number density, spatial distribution, and internal structures strongly
depend on cosmological parameters such as matter density (Ωm), dark energy
density (ΩΛ), and the Hubble constant (H0). By comparing observed cluster abun-
dances, mass distributions, and scaling relations (e.g., between mass, temperature,
and luminosity) with theoretical predictions, astronomers can place constraints on
cosmological models and parameters. This makes clusters vital in addressing out-
standing cosmological puzzles, including the nature of dark matter, dark energy,
and the Universe’s expansion history [3].

Laboratories for Galaxy Evolution and Baryonic Physics: The cluster environ-
ment profoundly influences galaxy evolution processes. Interactions such as ram-
pressure stripping, galaxy harassment, and tidal interactions are intensified in clus-
ters due to the dense environment and high relative velocities. Clusters thus offer
valuable observational settings to study how environment-driven processes reg-
ulate star formation rates, morphological transformations, and AGN activities in
galaxies [18, 41].

Tests of Fundamental Physics: Galaxy clusters also facilitate tests of fundamen-
tal physics, including gravity theories and neutrino physics. Gravitational lensing
observations, galaxy motions, and the thermal state of the ICM can probe devia-
tions from general relativity, constrain neutrino masses, and test potential modifi-
cations to standard particle physics [35].

In summary, galaxy clusters are pivotal across astrophysics and cosmology, serv-
ing as laboratories to understand gravitational dynamics, cosmological structure
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formation, galaxy evolution processes, and fundamental physical laws governing
the Universe.

1.2 icm and its observational probes

What is Intracluster Medium?

The Intracluster Medium (ICM) constitutes the diffuse hot plasma that pervades
the space between galaxies within galaxy clusters. Composed primarily of ionized
hydrogen and helium, with trace amounts of heavier elements, this plasma repre-
sents the majority of baryonic mass in clusters and plays a fundamental role in
their evolution and observable properties. Typical temperatures of the ICM range
from approximately 107 to 108 Kelvin. Such high temperatures result from the
virialization of gravitational potential energy released during cluster formation
and subsequent merger events [142].

The temperature profile of the ICM typically shows variations from the cluster
core to the outskirts, influenced by heating and cooling processes, including shocks
induced by mergers, AGN feedback, and radiative cooling in the densest regions.
Spatially resolved temperature measurements can be used for understanding clus-
ter dynamics and energy distribution [165].

Mass fractions within galaxy clusters reveal that dark matter dominates, account-
ing for approximately 85% of the total cluster mass. However, the baryonic compo-
nent, primarily the ICM, constitutes roughly 12-15% of the total mass, significantly
exceeding the mass contained within galaxies. Precise measurements of ICM mass
fractions provide cosmological constraints, particularly regarding the matter den-
sity parameter, Ωm, and the baryon fraction, impacting cosmological models [32].

Within galaxy clusters, the ICM overwhelmingly dominates the baryonic mass
budget, representing around 80-90% of the total baryonic content, while galaxies
themselves typically account for merely 10-20%. This distribution underscores the
ICM’s significance for understanding cluster formation and evolution, as well as
broader cosmological processes [32].

The mass fraction of the ICM is typically derived using X-ray observations of
its diffuse emission, combined with gravitational mass estimates from lensing or
dynamical methods. Consistent with hydrodynamical cosmological simulations,
these measurements provide essential validation of cosmological models, partic-
ularly the predictions of baryon-to-dark matter ratios and the thermal state of
baryonic matter on large scales [32].

The spatial variation of the ICM mass fraction within clusters also carries vital
information about processes such as gas cooling, star formation, and feedback
mechanisms. Cluster cores generally exhibit lower ICM fractions due to enhanced
cooling and galaxy formation, whereas outer regions better reflect cosmic baryonic
abundances, making them ideal for cosmological studies [133].

Main Observational Probes of the ICM

The ICM is studied through a diverse range of observational techniques span-
ning the electromagnetic spectrum, each providing complementary insights into
its properties and dynamics.
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X-ray Observations: The dominant probe of the ICM is its diffuse X-ray emis-
sion, which arises primarily from thermal bremsstrahlung (free-free radiation) pro-
duced as electrons are deflected by the Coulomb fields of ions in the hot plasma.
For a fully ionized, optically thin plasma in collisional ionization equilibrium, the
volume emissivity of thermal bremsstrahlung is approximately

ϵff
ν ∝ neniT

−1/2 exp
(
−

hν

kBT

)
, (1)

where ne and ni are the electron and ion number densities, respectively, and T

is the plasma temperature [141]. The exponential cutoff at photon energies ∼ kBT

renders the bremsstrahlung spectrum a sensitive diagnostic of the ICM tempera-
ture, while the normalization of the continuum emission scales with n2

e , making
X-ray brightness a powerful tracer of gas density.

At temperatures typical of clusters (107–108 K), the X-ray emission extends over
the 0.1–10 keV band, well matched to the sensitivity of current-generation satel-
lites such as Chandra, XMM-Newton, and eROSITA. These instruments provide
high-resolution imaging and spectroscopy that enable the reconstruction of radial
profiles of gas density, temperature, entropy, and pressure, which are essential for
constraining hydrostatic mass estimates and baryon fractions [133, 165].

Superimposed on the continuum emission are prominent emission lines from
highly ionized heavy elements, most notably the Fe XXV and Fe XXVI Kα com-
plexes near 6.7–6.9 keV, as well as lines from lighter elements such as O, Ne, Mg,
Si, and S. The equivalent widths and ratios of these lines provide direct measure-
ments of the ICM metallicity and relative abundance patterns [16]. Such data re-
veal that the ICM is enriched to ∼0.3 solar metallicity, implying a long history of
star formation and feedback processes (including both core-collapse and Type Ia
supernovae) that distributed metals from galaxies into the surrounding medium
[170]. The spatial distribution of metals further encodes the efficiency of feedback,
turbulent mixing, and cluster assembly history.

Beyond static thermodynamic diagnostics, X-ray observations can also probe
dynamical processes. Sharp surface-brightness discontinuities reveal shock fronts
and cold fronts generated during cluster mergers, allowing direct measurements of
shock Mach numbers and insights into plasma transport processes such as viscos-
ity, conduction, and magnetic field draping [98]. Measurements of line broadening
and centroid shifts with high-resolution spectroscopy (e.g., with Hitomi and its
planned successor XRISM) open a new window on ICM turbulence and bulk mo-
tions, quantifying the non-thermal pressure support that affects hydrostatic mass
determinations [62].

X-ray observations provide the most direct and comprehensive means of charac-
terizing the thermodynamic state, chemical enrichment, and dynamical activity of
the ICM. They form the backbone of cluster astrophysics, enabling determination
of cluster mass profiles, baryon fractions, and feedback histories, while also serv-
ing as indispensable inputs to cosmological applications based on cluster scaling
relations and abundance studies.

Radio Observations: Radio observations provide a complementary window into
the intracluster medium (ICM), probing its non-thermal components (e.g., relativis-
tic particles and magnetic fields) that are otherwise invisible in thermal X-ray stud-
ies. The dominant mechanism is synchrotron radiation, produced by relativistic
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electrons (with Lorentz factors γ ∼ 103–105) spiraling around cluster-scale mag-
netic fields of order µG. The synchrotron emissivity at frequency ν is approxi-
mately

jν ∝ N(γ)B1+αν−α, (2)

where N(γ) is the electron energy distribution, B is the magnetic field strength, and
α is the synchrotron spectral index [141]. The observed radio continuum spectrum
thus directly encodes the relativistic electron population and the magnetic field
properties.

cluster-scale radio phenomena . Large diffuse radio sources, unassoci-
ated with individual galaxies, are now well established as signatures of merger-
driven activity in clusters. Three principal classes are identified:

• Radio halos: Mpc-scale, centrally located diffuse emissions with steep spec-
tra (α ∼ 1.1–1.5), typically tracing the distribution of the thermal ICM. Ra-
dio halos are correlated with dynamically disturbed, merging clusters and
are thought to be powered by turbulence reaccelerating relativistic electrons
throughout the cluster volume [19, 27].

• Radio relics: Elongated, peripheral sources aligned with merger shock fronts.
Their morphology and polarization patterns support an origin in diffusive
shock acceleration of cosmic-ray electrons at large-scale merger shocks [74,
180]. Relics can reach sizes of several Mpc and provide direct constraints on
shock Mach numbers and magnetic field amplification processes.

• Mini-halos: Smaller (∼100–500 kpc) diffuse sources surrounding brightest clus-
ter galaxies (BCGs) in cool-core clusters. These are likely sustained by turbu-
lence generated by AGN feedback and gas sloshing, offering insights into the
interplay between cooling flows and non-thermal processes [54].

Faraday rotation measurements of background and embedded radio sources
demonstrate that intracluster magnetic fields typically have strengths of order a
few µG, with coherence lengths of 10–100 kpc [22]. The presence of large-scale
synchrotron emission implies efficient acceleration or reacceleration of relativis-
tic electrons, since their radiative lifetimes (∼ 108 yr) are much shorter than clus-
ter dynamical times. This necessitates in-situ acceleration, achieved either through
merger-driven turbulence (turbulent reacceleration models) or through shock accel-
eration (diffusive shock acceleration, DSA). These processes also tie radio emission
directly to the cluster dynamical state.

Recent advances in low-frequency radio interferometry, particularly with the
Giant Metrewave Radio Telescope (GMRT), the Low Frequency Array (LOFAR),
and the upgraded Very Large Array (VLA), have enabled detailed studies of diffuse
cluster emission at high sensitivity and resolution [179]. Upcoming surveys with
the Square Kilometre Array (SKA) promise to revolutionize the field, providing
orders-of-magnitude improvements in sensitivity and sky coverage. These facilities
will enable statistical studies of halos and relics across cosmic time, constraining
the non-thermal energy budget of clusters and the microphysics of cosmic-ray
acceleration and magnetic field amplification.
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Radio observations uniquely probe the relativistic particle populations and mag-
netic fields of the ICM, offering important insights into merger dynamics, feed-
back processes, and plasma microphysics. Together with thermal diagnostics from
X-rays and SZ measurements, they are indispensable for constructing a complete
picture of the thermal and non-thermal energy balance in galaxy clusters.

Gravitational Lensing: Gravitational lensing provides an independent, mass-
based observational probe of galaxy clusters. By measuring the deflection of light
from distant background galaxies, lensing enables precise determinations of total
cluster mass profiles without relying on assumptions about dynamical equilibrium
or the state of the gas. Strong lensing phenomena, such as giant arcs and Einstein
rings, occur in dense cluster cores, while weak lensing provides mass measure-
ments extending to larger radii. Lensing studies are essential for validating hydro-
static mass estimates derived from X-ray and SZ measurements and for testing
cosmological models [104].

Optical Observations: Optical observations complement other techniques by
studying cluster galaxies and their interactions with the ICM. Spectroscopic and
photometric surveys provide crucial insights into galaxy evolution processes such
as star formation quenching, morphological transformations, and AGN feedback
driven by interactions with the ICM. Optical studies also identify cluster mem-
berships, measure galaxy velocities, and contribute significantly to cluster mass
estimations via dynamical methods. Furthermore, optical imaging facilitates the
identification of gravitational lensing signatures and the study of the galaxy lumi-
nosity function and stellar populations within clusters, shedding light on galaxy
formation histories and their connection to ICM processes [41, 139].

Sunyaev–Zeldovich Effect: The Sunyaev–Zeldovich (SZ) effect describes the dis-
tortion of the cosmic microwave background (CMB) radiation spectrum caused by
inverse Compton scattering of CMB photons by high-energy electrons in the ICM.
The SZ effect provides a unique, redshift-independent probe of cluster properties,
particularly valuable for studying distant clusters. Observatories such as the At-
acama Cosmology Telescope (ACT), the South Pole Telescope (SPT), and Planck
have systematically surveyed clusters via SZ observations, significantly expanding
our cluster catalogs and enhancing cosmological constraints. SZ measurements
allow for precise determination of cluster pressures, masses, and even peculiar ve-
locities through kinematic SZ effects, offering a powerful method for cosmological
and astrophysical studies [23, 129].

Figure 1 highlights the complementarity of observational probes: galaxies and
dark matter from lensing, thermal gas from X-ray emission, and relativistic compo-
nents from radio synchrotron emission. Together, they establish galaxy clusters as
laboratories where gravitational, thermal, and non-thermal physics can be jointly
constrained.

This multiwavelength view (Fig 1) highlights the complementarity of observa-
tional probes: galaxies and dark matter from lensing, thermal gas from X-ray
emission, and relativistic components from radio synchrotron emission. Together,
they establish galaxy clusters as laboratories where gravitational, thermal, and
non-thermal physics can be jointly constrained.
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Figure 1: The galaxy cluster Abell 2744. Left: optical (Subaru BRz; Medezinski et al. 2016)
view of the cluster. White linearly spaced contours represent the mass surface
density (κ = Σ/Σcr) from weak-lensing studies [95, 105]. Middle: Chandra X-ray
emission (0.5–2.0 keV band) from the hot thermal ICM (blue). Right: 1–4 GHz
VLA radio image (red) tracing cosmic rays and magnetic fields. Figure adapted
from van Weeren et al. [179].
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2.1 lambda cdm model and cosmological significance of galaxy

clusters

Components of ΛCDM: Cosmological Constant, Cold Dark Matter, Ordinary Matter

The cosmological model, Λ Cold Dark Matter (ΛCDM), specifies the homogeneous
expansion through the Friedmann equations and the inhomogeneous growth of
structure through gravitational instability. Its matter-energy content is summarized
by dimensionless density parameters Ωi = ρi/ρcrit with

ρcrit(z) ≡
3H2(z)

8πG
, H2(a) = H2

0

[
Ωra

−4 +Ωma−3 +Ωka
−2 +ΩΛ

]
, (3)

where a = (1+ z)−1 is the scale factor, Ωm = Ωc +Ωb is the total non-relativistic
matter (cold dark matter + baryons), Ωr includes photons and (effectively mass-
less) neutrinos, Ωk ≡ 1−

∑
iΩi encodes spatial curvature, and ΩΛ represents the

cosmological constant [24].

cosmological constant (Λ) Originally introduced to permit a static solu-
tion to Einstein’s field equations [46], the cosmological constant acts as a uniform
energy density with stress-energy tensor T

(Λ)
µν = −ρΛgµν, corresponding to an

equation of state pΛ = wΛρΛ with wΛ = −1. As emphasized by Zel’dovich [174],
Λ can be interpreted as the energy density of the quantum vacuum. A positive Λ

accelerates the expansion at late times and provides a simple explanation of the
supernova Hubble diagram, in which Type Ia supernovae appear dimmer than
expected in a decelerating universe [124, 137]. In the background dynamics, ΩΛ

is spatially homogeneous and does not cluster on sub-horizon scales; its principal
role in the present context is to set the recent expansion history against which
cluster abundances and growth are calibrated.

cold dark matter (cdm). Evidence for a non-luminous gravitating com-
ponent dates back to galaxy clusters [177] and galaxy rotation curves [140]. In
the CDM hypothesis, this component is non-relativistic by the epoch of matter-
radiation equality and effectively collisionless on astrophysical scales. Its pressure
is negligible (wc = 0), so its background density scales as ρc ∝ a−3 and it clusters
on all scales above its tiny free-streaming length. The CDM paradigm provides
a successful framework for hierarchical structure formation: small halos collapse
first, later merging into progressively larger systems [14]. In linear theory, CDM
dominates the gravitational potential wells that seed the growth of baryonic struc-
ture; in the non-linear regime, it sets the halo mass function and clustering against
which groups and clusters are identified and modeled throughout this thesis.

Cold dark matter (CDM) is effectively pressureless and non-relativistic by mat-
ter–radiation equality, with a negligible free-streaming length; it preserves small-

11
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scale power and yields bottom-up (hierarchical) assembly in which small halos
form first and merge into larger systems. Warm dark matter (WDM) consists
of particles with keV-scale masses and residual thermal velocities that erase pri-
mordial fluctuations below a characteristic half-mode scale (free-streaming lengths
∼ 0.1–1 Mpc), suppressing low-mass halos and substructure relative to CDM [15].
Hot dark matter (HDM), exemplified by eV-scale neutrinos, free-streams over tens
of Mpc when non-relativistic, wiping out small-scale perturbations and produc-
ing a top-down (“pancake”) sequence of structure formation, incompatible with
the observed galaxy distribution and clustering [38]. Current large-scale structure
data, particularly the Lyman-α forest, strongly limit WDM-like suppression, im-
plying lower bounds on the WDM particle mass of a few keV (model dependent)
[164].

ordinary (baryonic) matter . Baryons (with electrons) constitute the ordi-
nary matter content, sharing wb ≈ 0 at late times and thus ρb ∝ a−3. Unlike CDM,
baryons experience pressure forces and, prior to recombination, are tightly coupled
to photons. Acoustic oscillations in this photon-baryon fluid imprint a characteris-
tic scale in the matter distribution [122] and, due to diffusion (Silk) damping, erase
small-scale fluctuations in the baryons relative to CDM [152]. After recombina-
tion and reionization, baryons fall into CDM potential wells and undergo complex
hydrodynamics, cooling, star formation, and feedback. In the high-mass halos of
interest here, the bulk of baryons resides not in stars but in the hot, diffuse ICM,
whose thermodynamics and observable tracers (X rays, and Radio effect) we will
use as probes of growth and assembly in later chapters.

energy-budget percentages at z ≈ 0 . In the concordance ΛCDM cos-
mology, the present-day energy density is dominated by dark energy with a sub-
dominant matter component split into cold dark matter and baryons. Using the
Planck Collaboration et al. [130] base ΛCDM solution, the inferred parameters are
Ωm = 0.315± 0.007 with Ωb ≃ 0.049 and Ωc ≃ 0.264, and ΩΛ = 0.685± 0.007;
radiation today is negligible (Ωr ∼ 10−4).1 Expressed as percentages, the cosmic
inventory is therefore ∼ 68.5% dark energy, ∼ 26.4% cold dark matter, and ∼ 4.9%
baryons, implying a cosmic baryon fraction fb = Ωb/Ωm ≈ 0.156 [130].

In this framework, galaxy clusters emerge as rare, high-mass peaks in the cosmic
density field, making them exceptionally sensitive tracer of both the matter content
and the expansion history of the universe.

Success of the Theory

The ΛCDM model gives a coherent, quantitative picture of the Universe from early
times to the present. It links the initial conditions seen in the cosmic microwave
background (CMB) to the web of galaxies we map today, and it connects the growth
of structure to the measured expansion history. Here we highlight three pillars of
this success.

1 Values vary at the percent level with data combinations and neutrino assumptions; curvature is
consistent with zero, Ωk ≈ 0.
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large-scale structure . Wide-area galaxy surveys measure the clustering
of galaxies over hundreds of megaparsecs. Their two-point statistics and power
spectra agree with ΛCDM predictions when the model is seeded with nearly scale-
invariant, Gaussian fluctuations. The baryon acoustic oscillation (BAO) feature ap-
pears at the expected comoving scale and serves as a standard ruler in the late-time
Universe [48]. On the theory side, large N-body and hydrodynamical simulations
within ΛCDM reproduce the observed filament–node pattern and its statistics, pro-
viding a bridge from initial conditions to the present-day galaxy distribution [159].
Independently, CMB temperature and polarization maps pin down the initial fluc-
tuation spectrum and key background parameters, and are well fit by the same
model [130].

galaxy and cluster abundances . In ΛCDM, the number of dark-matter
halos as a function of mass and redshift (the halo mass function) can be predicted
and calibrated on simulations. These predictions match observations over many
decades in mass when selection effects and mass proxies are handled carefully
[163]. In particular, counts of massive galaxy clusters-identified in X-ray, SZ, or
optical data-and their evolution constrain Ωm and σ8 in a way that is consistent
with CMB-inferred values, within current systematic uncertainties [166]. The over-
all picture supports hierarchical growth: small halos form first and later assemble
into groups and clusters.

expansion history. Distance-redshift measurements from Type Ia supernovae
show that the expansion of the Universe is accelerating at late times [124, 137].
When combined with the CMB acoustic scale and the BAO ruler, these data select
a spatially flat model with matter plus a cosmological constant that also accounts
for structure growth and halo abundances [48, 130]. In this sense, the background
expansion and the growth of structure are described by a single, self-consistent
parameter set-one of the hallmark successes of ΛCDM.

Because galaxy clusters sit on the high-mass tail of the halo population and form
at the intersections of filaments, their statistics and internal properties provide sen-
sitive tests of all three pillars above. We will make use of this in the next sections.

Open Issues and Challenges

Despite its broad successes, ΛCDM faces several active challenges:

small-scale tensions . On galaxy scales, three long-standing discrepancies
are often discussed. The cusp–core problem refers to central density profiles of
dwarfs that appear shallower than the cusps seen in dark-matter–only simulations;
the missing satellites problem is the apparent shortfall of observed dwarf satellites
compared with the large number of predicted low-mass subhalos; and too big to
fail highlights simulated subhalos that are too dense to host the brightest observed
satellites. Baryonic processes (bursty feedback, tides, reionization) can reduce some
of these gaps, but a full, joint solution across systems is still being tested [21].

the hubble tension. Independent measurements of the present-day Hub-
ble constant disagree at the several-sigma level. Inference from the early Universe



14 galaxy clusters as the end results of hierarchical growth in lambda cdm

using CMB data within base ΛCDM gives H0 ≃ 67.4± 0.5 km s−1 Mpc−1, while lo-
cal distance-ladder determinations using Cepheids and Type Ia supernovae prefer
H0 ≃ 73 km s−1 Mpc−1 with ∼ 1 km s−1 Mpc−1 uncertainty. This persistent offset
may point to unrecognized systematics or to extensions of the model (e.g., early
dark energy), but no consensus solution has emerged [130, 138].

early massive galaxies . Deep near-infrared imaging has revealed candi-
dates for very massive galaxies at z ⩾ 7 with stellar masses ⩾ 1010 M⊙ and high
number densities. If confirmed, such systems require rapid assembly shortly af-
ter reionization and put pressure on simple forms of star-formation histories and
feedback at early times. Improved spectroscopic redshifts and mass estimates are
refining these samples, but the overall picture continues to motivate tests of early
galaxy formation within ΛCDM [87].

How Clusters Serve as Cosmological Probes?

Galaxy clusters are rare, high-mass halos that sit on the exponential tail of the
halo mass function. Their number density and spatial distribution are therefore very
sensitive to the amplitude and growth of matter fluctuations and to the expan-
sion history. In parallel, clusters host a hot, X-ray–bright intracluster medium
(ICM) whose thermodynamics encodes the depth of the potential well. Together,
these facts allow cluster surveys to constrain key cosmological parameters when
mass–observable relations and selection effects are under control.

abundance and distribution. The basic idea is simple: very massive halos
are rare, and their rarity depends strongly on how fast structure grows. This is
captured by the halo mass function

dn

dM
(M, z) = f(σ)

ρ̄m

M

d lnσ−1(M, z)
dM

,

where σ(M, z) = D(z)σ(M, 0) is the rms fluctuation of the density field on the
mass scale M, and D(z) is the linear growth factor. The function f(σ) summa-
rizes the collapse statistics and is calibrated from theory and simulations [134, 149,
163]. Because clusters live on the high-mass (low-σ) tail, even small changes in the
growth (through D(z)), in the fluctuation amplitude (σ8), or in the matter density
(Ωm) lead to large changes in the predicted number of clusters.

To compare with data, one maps mass to an observable O (e.g., X-ray flux, SZ
signal, optical richness) and folds in the survey selection function S(O, z) that tells
which objects are detected at each redshift. Counts as a function of redshift then
test the combination of growth and expansion encoded by the cosmological model.

Beyond the total counts, the spatial distribution of clusters also carries information.
Massive halos are more strongly clustered than the matter field; this “bias” b(M, z)
grows with mass and can be measured from the two-point clustering of the cluster
sample [71]. Fitting counts and clustering together helps break degeneracies (e.g.,
between σ8 and Ωm) and provides a stronger, self-consistent cosmological test.

internal structure and self-similar scalings . In a gravity-only, self-
similar picture, halo structure and thermodynamics follow simple scalings with
mass and redshift: T ∝ M2/3E2/3(z) and (for bremsstrahlung-dominated emission)
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LX ∝ E7/3(z)M4/3, where E(z) ≡ H(z)/H0 [72]. The ICM thermal energy scales
as Eth ∝ M5/3E2/3(z), motivating low-scatter mass proxies that trace integrated
pressure or gas mass. Departures from exact self-similarity-driven by cooling, star
formation, and feedback-are informative systematics that can be modeled and, in-
creasingly, calibrated with simulations and multiwavelength data.

x-ray and sz observables as mass proxies . The X-ray emissivity of hot,
optically thin plasma is ϵX ∝ n2

eΛ(T ,Z), allowing deprojection of gas density pro-
files; with spatially resolved temperatures, the hydrostatic equation gives

M(< r) = −
kBT(r) r

Gµmp

(
d lnne

d ln r
+

d ln T

d ln r

)
,

yielding MHSE
∆ profiles under the assumption of equilibrium [142]. Non-thermal

pressure support (bulk motions, turbulence) biases MHSE low at the ∼10% level in
relaxed systems and more in disturbed ones, motivating external calibration. Two
robust, low-scatter X-ray mass proxies widely used in counts analyses are the gas
mass Mgas and YX ≡ MgasT , the latter tracing total thermal energy and scaling
nearly self-similarly with mass (YX ∝ M5/3E2/3) [85].

The thermal Sunyaev-Zel’dovich (tSZ) effect measures the line-of-sight integral
of electron pressure,

y =
σT

mec2

∫
nekBT dl, Y ≡

∫
ydΩ ∝ Eth

D2
A

,

and thus provides an (approximately) redshift-independent selection for massive
clusters [160, 161]. The integrated SZ signal Y (or Y500) exhibits low intrinsic scatter
at fixed mass and follows the same M5/3E2/3 trend expected from self-similarity;
its normalization and scatter can be calibrated with X-ray data and weak-lensing
masses [7].

mass calibration and systematics . Cosmological inference from cluster
counts hinges on the calibration of the mean relation ⟨lnO|M, z⟩ and its intrinsic
scatter, along with the survey selection S(O, z) and observable noise. Malmquist
and Eddington biases must be modeled when mapping between O and M. Weak
gravitational lensing offers a direct, nearly unbiased mass calibration for ensemble
averages [73], anchoring the mass scale used with X-ray and SZ proxies. Additional
cross-checks come from the gas-mass fraction method, which leverages the near-
universality of fgas in massive, relaxed clusters to constrain Ωm and the distance-
redshift relation [2]. With these elements in hand, cluster counts and their redshift
evolution provide competitive constraints on σ8 and Ωm and can probe the dark-
energy equation of state when combined with BAO and CMB information [130,
166].

Cluster abundances and clustering test the growth of structure; scaling relations
connect observables to mass; X-ray and SZ measurements supply low-scatter proxies
and selection. When tied together with careful mass calibration, clusters act as
precise cosmological probes while simultaneously informing baryonic physics in
massive halos.
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2.2 formation of clusters

Initial Conditions and Early Structure Formation

This subsection covers the linear stage only; how the initial perturbations were set
and processed up to the time when baryons could fall into dark-matter wells. The
non-linear build–up of protoclusters and clusters follows in the next subsection.

inflation and the origin of perturbations (t ∼ 10−36–10−32 s). A
short period of accelerated expansion stretches quantum fluctuations to super-
horizon scales, turning them into classical, nearly Gaussian curvature perturba-
tions with a close-to scale-invariant spectrum [11, 59]. These perturbations are the
seeds of all later structure.

reheating and the radiation era (t ⩽ 1 s to t ∼ 50 ,000 yr; z ⩾ 3400).
When inflation ends, the inflation decays and fills the Universe with a hot plasma
(reheating). The Universe is then radiation dominated. During this phase, sub-
horizon modes in the photon–baryon fluid undergo acoustic oscillations, while
cold dark matter (CDM) does not feel pressure and begins to set up the potential
wells that will later guide baryons.

matter–radiation equality (t ≈ 50 ,000 yr; z ≈ 3400). Once matter
dominates the energy density, CDM perturbations grow roughly as the scale factor
in linear theory. The linear matter power spectrum can be written as

P(k, z) = As k
ns T2(k)D2(z), (4)

with primordial amplitude and tilt (As,ns) set by inflation, transfer function T(k)

encoding horizon-entry physics, and growth factor D(z) describing linear growth
[10]. Modes that entered the horizon during radiation domination were suppressed
relative to large scales, imprinting the CDM “turnover” in P(k).

recombination and decoupling (t ≈ 380 ,000 yr; z ≈ 1100). Electrons
and protons combine, the photon mean free path jumps, and the CMB is released.
After decoupling, baryons fall into existing CDM potential wells. The earlier sound
waves in the photon–baryon fluid leave baryon acoustic oscillations (BAO) as a
standard comoving ruler in the matter distribution [122, 152].

early linear growth into the cosmic web skeleton (t ∼ 107–109 yr;
z ∼ 30–6). As D(z) increases, density contrasts on progressively larger mass
scales approach unity. The initial field is well modeled as Gaussian, so its peaks
and tidal field set the preferred directions of collapse that will later become sheets
and filaments; the skeleton onto which non-linear structures will assemble [10,
175].

Inflation sets the initial spectrum; the radiation and matter eras shape T(k); recom-
bination frees baryons to follow CDM. By z ∼ 6 (t ∼ 1Gyr), the stage is set for
non-linear assembly along the emerging web.
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Proto-Clusters and High-Redshift Cluster Formation

We now move to the non-linear regime: how rare peaks turn into protoclusters and,
later, massive, bound clusters.

onset of non-linearity and anisotropic collapse (t ∼ 0 .1–1 Gyr;
z ∼ 30–6). When the variance on a given mass scale reaches unity, linear the-
ory breaks down. In the Zel’dovich picture, matter collapses first along one axis
to form sheets (walls), then along a second to form filaments, and finally along
the third to form dense nodes [175]. This produces the filamentary cosmic web seen
in simulations and surveys [17]. Rare, high peaks (large ν = δ/σ) sit at filament
intersections, i.e. preferred sites for future clusters.

spherical collapse and halo formation times . A region of mass M

virializes when its linearly extrapolated overdensity reaches δc ≃ 1.686 (weakly cos-
mology dependent), setting a mapping between the initial field and collapse red-
shift [58]. This framework underlies the halo mass function and the hierarchical
picture in which low-mass halos form earlier and later merge into larger systems
[88, 134].

protoclusters (t ∼ 1–3 Gyr; z ∼ 6–2). Before full virialization, overdense
regions traced by multiple converging filaments appear as protoclusters. They are
extended (tens of comoving Mpc), highly anisotropic, and actively accreting. Star
formation and black-hole growth are vigorous, and early intra-halo gas is being
shock-heated. These structures mark the future nodes of the web but are not yet
relaxed clusters [117].

assembly into bound clusters (t ∼ 4–8 Gyr; z ∼ 1–0 .5) and matura-
tion to today (t ≈ 13 .8 Gyr; z = 0). Through a mix of smooth accretion
and mergers (major and minor) guided by the surrounding filaments, many proto-
clusters reach M200c ⩾ 1014M⊙ and become fully bound clusters by z ∼ 1. Their
intracluster medium (ICM) records this assembly via shocks, cold fronts, and tur-
bulence; substructure and ellipticity reflect ongoing anisotropic infall. By z ⩽ 0.5,
a large fraction of the most massive systems (M200c ⩾ 1015M⊙) have assembled,
though accretion continues along preferred directions.

observational evidence for proto-clusters . Deep surveys have iden-
tified high-redshift proto-clusters (z > 2) as overdensities of galaxies, star-forming
regions, and quasars. They exhibit vigorous star formation, intense AGN activity,
and significant gas inflows, consistent with rapid growth in a dense environment
[26, 31]. These observational results complement numerical simulations, which link
proto-clusters to the mature clusters observed today. Understanding their proper-
ties is crucial for constraining early structure formation and feedback processes.

In conclusion, galaxy clusters trace their origin to rare peaks in the primordial
density field. Their growth from anisotropic collapse to proto-clusters, and finally
into massive bound clusters, encapsulates the full history of hierarchical structure
formation.
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3.1 dynamics and observational effects

Classification Between Relaxed and Disturbed

Galaxy clusters span a continuum of dynamical states, but are often classified into
two broad categories: relaxed and disturbed systems. Relaxed clusters exhibit regular,
approximately spherical morphologies, centrally peaked X-ray surface brightness,
and smooth mass distributions that are consistent with hydrostatic equilibrium.
They frequently host cool cores; dense, low-entropy gas in the center and their
thermodynamic profiles (density, temperature, entropy, pressure) follow simple,
nearly self-similar forms [133].

Disturbed clusters, in contrast, display irregular or multimodal morphologies,
asymmetric X-ray isophotes, offsets between the brightest cluster galaxy (BCG)
and the X-ray peak, and substantial substructures in both galaxies and dark mat-
ter. These features typically indicate recent or ongoing mergers. The distinction
is not merely morphological: relaxed and disturbed clusters exhibit systematically
different scaling relations, baryon distributions, and lensing–X-ray mass offsets,
making dynamical classification essential for cosmological applications [136].

Quantitative metrics have been developed to distinguish between these states,
including: (i) centroid shifts (variance of X-ray centroid positions with aperture), (ii)
power ratios of X-ray surface brightness multipoles, and (iii) concentration parameters
(ratio of central to global surface brightness). These provide robust, reproducible
measures of relaxation across large samples.

Substructure and Merger Signatures

Galaxy cluster mergers, the most energetic events since the Big Bang, leave distinct
multiwavelength imprints on the intracluster medium (ICM), galaxy population,
and dark matter distribution.

x-ray signatures . Mergers drive shocks and turbulence into the ICM. Shock
fronts appear as sharp surface-brightness and temperature jumps, heating gas and
increasing X-ray luminosity locally. The Bullet Cluster is the canonical example: a
supersonic subcluster has generated a bow shock visible in Chandra images, with
Mach number M ∼ 3 [98]. Cold fronts, contact discontinuities between gas phases
of different entropies, arise from gas sloshing or core–core encounters, appearing
as sharp edges in surface brightness but without shock heating [98]. Disturbed
clusters often show highly asymmetric X-ray morphologies, multiple peaks, and
deviations from hydrostatic equilibrium.

19
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radio signatures . Radio observations reveal the non-thermal consequences
of mergers. Radio relics, such as the Toothbrush Relic, trace peripheral shocks
through elongated, polarized synchrotron emission aligned with the shock surface.
Radio halos, in contrast, are diffuse, centrally located sources extending over ∼Mpc
scales, powered by turbulence re-accelerating relativistic electrons throughout the
cluster volume [19, 179]. Mini-halos in cool-core clusters trace turbulence generated
by AGN feedback and gas sloshing. The presence, morphology, and spectrum of
these diffuse sources provide a direct window on the efficiency of particle acceler-
ation and magnetic field amplification during mergers.

gravitational lensing signatures . Mergers can decouple collisionless
dark matter from collisional baryons, producing offsets between galaxy, gas, and
dark matter distributions. In the Bullet Cluster, weak and strong lensing maps re-
veal dark matter peaks displaced from the hot gas, offering compelling evidence
for the collisionless nature of dark matter [35]. Lensing also uncovers mass sub-
structures otherwise invisible in X-rays, enabling direct tests of structure formation
and dark matter physics.

Together, these signatures establish a multiwavelength framework for identify-
ing and characterizing mergers. Each observational window highlights different
aspects of the dynamical state: X-rays trace the thermal plasma, radio emission
traces relativistic particles and magnetic fields, and lensing reveals the total (dark
+ baryonic) mass distribution. As illustrative examples of merger diagnostics, Fig-
ure 2a shows the Bullet Cluster where a Mach ∼2–3 bow shock and lensing–X-ray
offsets are evident [35], while Figure 2b shows the “Toothbrush” relic whose elon-
gated ridge and polarized bristles trace a large-scale merger shock [135].

Mass and Velocity Estimates

Accurate estimation of galaxy cluster masses and internal velocities is pivotal for
cosmological analyses. Here we will explain primary methods used for this pur-
pose:

dynamical methods . Galaxy redshift surveys provide velocity dispersions,
which, under the virial theorem, yield dynamical mass estimates. However, these
assume isotropy and equilibrium, which are violated in merging clusters. Substruc-
tures and velocity caustics can inflate dispersions in disturbed systems [67].

hydrostatic methods . X-ray and SZ observations probe gas density and
temperature (or pressure), from which hydrostatic equilibrium (HSE) masses can
be derived:

M(< r) = −
kBT(r) r

Gµmp

(
d lnne

d ln r
+

d ln T

d ln r

)
.

Non-thermal pressure from turbulence, bulk motions, and cosmic rays leads to a
systematic hydrostatic bias, typically ∼10–20% but larger in disturbed clusters [85].

gravitational lensing . Weak and strong lensing provide mass estimates in-
dependent of dynamical assumptions, mapping the projected mass distribution di-
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rectly. However, mergers and triaxiality can complicate the inversion and increase
scatter in mass estimates [104].

systematic biases . Mergers bias scaling relations (e.g., M-T , M-LX, M-YSZ)
by temporarily boosting luminosities and temperatures, leading to mass overes-
timates if equilibrium is assumed. Combining X-ray, SZ, lensing, and dynamical
methods is thus key for mass calibration, particularly in the disturbed regime [104,
133].

In summary, mergers imprint themselves across all cluster observables, complicat-
ing mass estimation but also providing powerful diagnostics of cluster dynamics,
plasma physics, and the nature of dark matter.

3.2 galaxy-galaxy and galaxy-icm interactions

Galaxy-Galaxy Encounters in Clusters

Interactions among galaxies within clusters are fundamental in shaping galaxy
properties. These encounters vary broadly, classified as either fast or slow. Fast en-
counters involve high-velocity, brief interactions predominantly in the dense clus-
ter core regions, affecting galactic morphology and internal gas reservoirs mini-
mally but potentially inducing transient star formation events. Slow encounters,
on the other hand, predominantly occur within galaxy groups falling into clusters,
allowing prolonged gravitational interactions that trigger significant tidal forces
and gas stripping, profoundly influencing galaxy evolution [108].

Ram Pressure Stripping and Bow Shocks

As galaxies traverse the hot, dense intracluster medium at high velocities, they ex-
perience ram pressure, stripping gas from their disks. This phenomenon, known
as ram-pressure stripping, significantly influences galaxy evolution, removing gas
necessary for sustained star formation. Galaxies undergoing strong ram-pressure
stripping exhibit characteristic observational signatures such as truncated gas disks,
trailing gas tails, and enhanced star formation in the leading edges. Addition-
ally, in extreme cases, supersonic motion can create bow shocks in the intracluster
medium, visible in X-ray [58, 131].

Tidal Interactions and Stripping

Tidal interactions within clusters arise from gravitational influences exerted by the
cluster potential and close galaxy encounters. These interactions distort galaxies’
stellar and gaseous components, leading to tidal stripping; i.e. removal of material
from galaxies outer regions. Tidal stripping profoundly influences galaxy morphol-
ogy and mass, often producing tidal tails and bridges observable in optical and ra-
dio wavelengths. Particularly in dense cluster cores, tidal interactions significantly
reshape galaxy structures, affecting subsequent evolutionary trajectories [18].
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Impact on Galaxy Evolution: Morphological Transformation, Quenching, and AGN Activ-
ity

Galaxy interactions within clusters drastically alter galaxy evolution pathways,
manifesting as morphological transformations, star formation quenching, and ac-
tive galactic nucleus (AGN) activity modifications. Environmental processes, such
as ram-pressure and tidal stripping, drive morphological transitions from late-type
spiral galaxies to early-type ellipticals or lenticulars (S0). Additionally, removal
of gas reservoirs efficiently quenches star formation, observable as a pronounced
galaxy color-morphology-density relation. Environmental influences also modu-
late AGN activities, potentially either suppressing or enhancing nuclear activities
through gas removal or funneling toward galactic centers, significantly affecting
cluster galaxy properties [41, 123].

3.3 feedback processes

AGN Feedback in Clusters

Feedback from active galactic nuclei (AGN) plays a crucial role in regulating clus-
ter thermal dynamics. Central cluster galaxies commonly host supermassive black
holes actively accreting matter, releasing vast energies into the intracluster medium.
AGN feedback manifests observationally through X-ray cavities, indicative of evac-
uated regions by relativistic jets, and radio bubbles visible at lower frequencies.
Such feedback regulates intracluster gas cooling, maintaining the delicate balance
necessary to explain observed cluster cooling flows and preventing catastrophic
starburst scenarios [51].

Star Formation and Supernova Feedback

Star formation and associated supernova (SN) explosions significantly influence
the intracluster medium’s thermodynamic state. Star formation triggered by galaxy
interactions and mergers releases energetic stellar winds and supernova-driven
outflows into the ICM, redistributing metals and heating gas. These processes
profoundly influence cluster gas dynamics, metal enrichment patterns, and tem-
perature distributions, essential for interpreting cluster scaling relations and their
cosmological implications [157].

3.4 open questions

Uncertainties in Cluster Mass and Dynamical State Estimates

Cluster mass estimation remains challenging due to systematic uncertainties in-
troduced by projection effects, substructure contamination, and departures from
hydrostatic equilibrium. Projection effects complicate distinguishing cluster-bound
structures from background and foreground galaxies. Substructures, prevalent in
dynamically active clusters, bias mass estimates, leading to discrepancies between
observational and theoretical predictions, challenging cosmological constraints de-
rived from cluster abundances [136].
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Role of Preprocessing and Environmental Effects

Understanding galaxy transformations necessitates distinguishing environmental
effects within clusters from preprocessing in galaxy groups. Preprocessing signif-
icantly affects galaxy properties before cluster infall, complicating interpretations
of cluster-specific influences. Quantifying the relative roles of preprocessing versus
direct cluster environment interactions remains essential for comprehensive galaxy
evolution models [101].

Non-Thermal Processes and Cosmic Rays

Non-thermal processes, particularly cosmic ray acceleration and magnetic fields
in clusters, pose intriguing unresolved issues. Cosmic rays contribute significantly
to cluster energetics, evident through radio halos and relics. Understanding their
origin, acceleration mechanisms, and influence on cluster dynamics remains chal-
lenging, demanding integrated observational and theoretical investigations [19].

Future Observations and Their Purposes

Upcoming observational facilities such as the Square Kilometer Array (SKA), Athena
X-ray observatory, and Euclid satellite promise revolutionary advancements in
understanding cluster dynamics. These instruments will provide unprecedented
resolution and sensitivity, clarifying unresolved cluster mass measurement issues,
environmental effects on galaxy evolution, and cosmic ray processes, ultimately
refining cosmological models [110].

This comprehensive exploration highlights the profound astrophysical and cos-
mological significance of galaxy clusters, necessitating ongoing investigation to
unravel their complexities and contributions to cosmic evolution.
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Figure 2: Top: Bullet Cluster (1E 0657−56): Chandra X-ray surface brightness with a bow
shock (right) and a cool “bullet” core, with weak-lensing mass contours offset
from the X-ray gas, illustrating the collisionless nature of dark matter. Image is
from Clowe et al. [35]. Bottom: The “Toothbrush” relic (1RXS J0603.3+4214): deep
GMRT/LOFAR/VLA radio imaging of the linear Mpc-scale relic; the bright ridge
and fainter bristles/streams trace a merger shock and ordered magnetic fields.
Image taken from Rajpurohit et al. [135].
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G A L A X Y C L U S T E R S I N S I M U L AT I O N S

4.1 introduction to cosmological simulations

The study of galaxy clusters requires bridging an enormous dynamic range: from
the large-scale cosmic web that channels matter into cluster nodes, down to the
internal processes of star formation, black-hole growth, and plasma physics that
govern the observable properties of galaxies and the ICM. Observations provide
snapshots of this complexity, but they cannot, by themselves, reveal the full three-
dimensional and temporal evolution of clusters. Cosmological simulations have
therefore become indispensable tools. They act as numerical laboratories, enabling
us to follow the coupled evolution of dark matter, baryons, stars, and black holes
under well-defined physical prescriptions, and to test theoretical models against
observational data.

At their core, cosmological simulations solve the coupled system of gravity, hy-
drodynamics, and microphysical models for processes such as cooling, star for-
mation, and feedback, within a cosmologically representative volume. Early simu-
lations in the 1980s and 1990s focused primarily on collisionless N-body dynam-
ics, successfully reproducing the hierarchical growth of dark-matter halos and the
large-scale filamentary pattern of the Universe [38]. However, they could not ad-
dress the baryonic physics that determine cluster observables such as X-ray lumi-
nosities, temperature profiles, or radio synchrotron structures. With the advent of
hydrodynamical methods (e.g. smoothed-particle hydrodynamics, adaptive mesh
refinement, moving-mesh schemes), simulations began to incorporate the gaseous
component, tracking the heating, cooling, enrichment, and dynamical state of the
ICM.

Today, cosmological simulations have matured into a central pillar of cluster as-
trophysics. They are not only capable of reproducing global statistical measures,
such as the halo mass function, galaxy luminosity function, or scaling relations
between cluster mass and X-ray or SZ observables, but also of generating synthetic
observations that can be compared directly with real data. This makes them criti-
cal for both interpreting current surveys and planning future ones (e.g. eROSITA,
Euclid, the Vera Rubin Observatory). In parallel, “zoom-in” techniques allow us to
study individual clusters with high resolution, capturing the interplay of mergers,
AGN feedback, turbulence, and non-thermal components in exquisite detail.

In this chapter, we will review the different classes of cosmological simulations
relevant to cluster science. We begin by discussing dark-matter-only (DMO) simu-
lations and their role in establishing the backbone of structure formation. We then
move to full hydrodynamical simulations, where baryonic physics and feedback
processes are modeled explicitly, before considering zoom-in simulations that tar-
get individual clusters at high resolution. Finally, we highlight the current state
of the art, focusing on the IllustrisTNG and TNG-Cluster projects, which combine
large cosmological volumes with sophisticated baryonic models and resolution
sufficient to study cluster physics in depth.

25
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4.2 types of galaxy cluster simulations

Dark Matter Only (DMO) Simulations

The earliest generation of cosmological simulations focused exclusively on the col-
lisionless dynamics of dark matter, motivated by the ΛCDM framework in which
dark matter dominates the matter density of the Universe. In these simulations,
the cosmic mass distribution is represented by a large number of particles inter-
acting solely via gravity, evolved forward in time using N-body techniques. This
approach is computationally efficient and isolates the role of dark matter in struc-
ture formation, without the additional complexities of baryonic physics.

Historically, N-body experiments in the 1980s and 1990s demonstrated the viabil-
ity of hierarchical growth under cold dark matter. Davis et al. [38] performed one of
the first large-scale simulations to show that the CDM paradigm could reproduce
the observed clustering of galaxies. Later, increasingly sophisticated calculations,
such as the Millennium Simulation [159], provided high-resolution predictions of
the cosmic web, halo mass functions, and subhalo abundance in cosmological vol-
umes. More recent efforts, such as the Bolshoi [80] and Bolshoi-Planck [82] simu-
lations, refined these predictions with updated cosmological parameters, enabling
direct comparisons to galaxy surveys such as SDSS and DES. These studies have
firmly established the DMO framework as the backbone of modern structure for-
mation theory.

DMO simulations yield robust predictions for a variety of key observables:

• Halo mass function: The abundance of dark matter halos as a function of mass
and redshift can be calibrated with high precision, providing a cornerstone
for cosmological tests using galaxy and cluster counts [163].

• Clustering statistics: Two-point correlation functions and power spectra of ha-
los in DMO simulations match the observed large-scale distribution of galax-
ies when coupled with halo occupation models [173].

• Substructure: DMO simulations predict a wealth of subhalos within massive
halos, providing the theoretical framework for galaxy–halo connection stud-
ies and dark matter annihilation searches [81].

Despite these successes, DMO simulations have inherent limitations when ap-
plied to galaxy clusters. Without baryonic processes, they cannot predict directly
observable properties such as X-ray luminosities, temperature profiles, or radio
emission from the intracluster medium. Moreover, the absence of baryonic physics
leads to discrepancies in the internal structure of halos: for example, pure dark
matter simulations predict overly cuspy inner density profiles compared to obser-
vations, a tension known as the cusp–core problem [107]. Similarly, the overabun-
dance of predicted subhalos compared to satellite galaxies in the Local Group,
the missing satellites problem, arises in the DMO framework and highlights the
necessity of baryonic processes to suppress or transform low-mass halos

Hydrodynamical Simulations with Baryonic Physics

While dark-matter-only simulations successfully describe the hierarchical growth
of halos, they neglect the baryonic component that gives rise to observable galax-
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ies, stars, and the ICM. To capture these phenomena, cosmological simulations
must incorporate gas dynamics, radiative cooling, star formation, chemical enrich-
ment, and feedback processes. These hydrodynamical simulations thus provide a
bridge between the underlying dark matter framework and the multi-wavelength
observations of galaxy clusters.

numerical methods .

• Smoothed Particle Hydrodynamics (SPH): a Lagrangian, particle-based method
in which gas is represented by discrete particles with kernel-smoothed prop-
erties [55, 97]. Classic formulations can suppress fluid instabilities and mix-
ing, although modern variants (e.g. pressure–entropy SPH) mitigate these
issues.

• Adaptive Mesh Refinement (AMR): an Eulerian approach that solves the hy-
drodynamics on a grid with local, on-the-fly refinement in regions of high
density or strong gradients; widely used in cluster and cosmic-web studies
by codes such as Enzo [20] and RAMSES [162].

• Moving-mesh schemes: hybrid finite-volume approaches, exemplified by Arepo

[155], which combine Lagrangian adaptivity with grid-based accuracy and
robust shock capturing. This method underpins large cosmological volumes
such as Illustris and IllustrisTNG [114, 127, 167].

baryonic physics . Hydrodynamical simulations must include a variety of
sub-grid models to represent processes occurring below the resolution limit:

• Radiative cooling and heating: primordial and metal-line cooling, plus photoion-
ization from a UV background, regulate the thermal state of the gas [77].

• Star formation and stellar feedback: cold, dense gas forms stars following em-
pirical laws (e.g. Kennicutt-Schmidt). Supernovae inject thermal and kinetic
energy, driving galactic winds that redistribute metals and regulate star for-
mation [157].

• Chemical enrichment: stellar evolution models track the production and distri-
bution of heavy elements, enriching the ICM and enabling comparison with
X-ray abundance measurements [172].

• Active galactic nuclei (AGN) feedback: accretion onto supermassive black holes
injects large amounts of energy into the surrounding medium, preventing
runaway cooling flows in cluster cores and shaping galaxy evolution. Ther-
mal and kinetic AGN feedback modes are implemented in state-of-the-art
simulations [151].

• Additional physics: modern simulations increasingly incorporate magnetic fields
[119], cosmic rays [126], and anisotropic transport processes (e.g. conduction,
viscosity), which influence the structure and thermodynamics of the ICM.

key projects and successes . Several landmark hydrodynamical simulation
campaigns have transformed our understanding of cluster physics:
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• The Illustris project [167] was among the first to model a cosmological volume
with detailed baryonic physics, successfully reproducing galaxy stellar mass
functions, morphologies, and enrichment patterns, but overproducing stellar
masses in massive galaxies.

• The EAGLE simulations [36, 144] calibrated feedback models to match the ob-
served galaxy stellar mass function and sizes, achieving excellent agreement
across a range of galaxy properties.

• Horizon-AGN [43] provided an alternative AGN feedback implementation
and explored black-hole driven galaxy quenching and morphological trans-
formations.

In the cluster regime, these simulations have reproduced many observed proper-
ties, including X-ray scaling relations, gas fractions, metallicity distributions, and
the suppression of cooling flows, establishing feedback as a fundamental ingredi-
ent of structure formation.

limitations and challenges . Despite their successes, hydrodynamical sim-
ulations remain subject to uncertainties. Sub-grid feedback prescriptions are cali-
brated to reproduce specific observables, introducing model dependence and de-
generacies. Different codes implementing similar physical processes often yield
divergent predictions, as demonstrated by the “nIFTy” cluster comparison project
[146]. Resolution limitations remain severe, particularly in large volumes, where
the internal structure of galaxies and the multiphase nature of the ICM cannot be
fully resolved. Moreover, processes such as plasma instabilities, cosmic-ray accel-
eration, and anisotropic conduction are only beginning to be incorporated.

In summary, hydrodynamical simulations provide the crucial link between dark
matter structure formation and the observable Universe. By modeling baryonic
physics, they reproduce the thermodynamics and scaling relations of galaxy clus-
ters, while also highlighting the uncertainties and open questions that motivate
the next generation of simulation efforts.

Zoom-in Simulations

While large-volume hydrodynamical simulations capture statistically representa-
tive samples of clusters, their finite resolution limits the fidelity with which inter-
nal structures and small-scale processes can be studied. To overcome this, zoom-in
techniques selectively increase resolution within a chosen region of interest; typ-
ically around a single massive halo or a set of progenitors, while retaining the
correct cosmological environment on large scales. This approach dynamically allo-
cates computational resources, allowing the same simulation to capture both the
megaparsec-scale accretion flows and the kiloparsec-scale details of intracluster
physics.

numerical technique . Zoom-in simulations begin with a large-volume, low-
resolution cosmological run in which halos of interest are identified. The initial
conditions are then re-generated, embedding the target halo within a region of
much higher particle or cell resolution, while surrounding large-scale structures
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are modeled with lower resolution. This ensures that the growth and environment
of the cluster are modeled consistently with the cosmic web, but with sufficient
resolution to study its internal dynamics in detail [78, 112].

applications to clusters . Zoom-in simulations have been especially pow-
erful for galaxy cluster studies. They enable:

• Merger dynamics: By resolving substructure and shock fronts at high spatial
resolution, zoom-ins allow detailed modeling of merger-induced phenomena
such as cold fronts, turbulence, and radio relic shocks.

• Gas physics: The fine resolution permits more accurate treatment of the in-
tracluster medium (ICM), including entropy profiles, cooling flows, and the
interaction of AGN jets with the surrounding gas.

• Galaxy populations: Higher resolution also allows galaxies within clusters to
be resolved, making it possible to study star formation quenching, morpho-
logical transformation, and satellite stripping in dense environments.

key projects . Several landmark zoom-in campaigns have targeted massive
halos to study clusters in detail:

• The Phoenix Project [53] extended the Aquarius approach to the cluster regime,
producing ultra-high-resolution simulations of massive halos and their sub-
structures, enabling direct comparison with strong lensing and subhalo statis-
tics.

• The MUSIC simulations (Marenostrum-MultiDark SImulation of galaxy Clus-
ters; [145]) combined zoom-in techniques with baryonic physics to investi-
gate gas fractions, scaling relations, and the impact of feedback in large clus-
ter samples.

• The Cluster-EAGLE simulations [12] employed zoom-ins of clusters within
the EAGLE framework, resolving both cluster-scale gas profiles and galaxy
populations.

• The TNG-Cluster simulations [113] represent a next-generation zoom-in cam-
paign within the IllustrisTNG framework, targeting more than 300 galaxy
clusters with masses M200c ⩾ 1014M⊙. With resolution comparable to the
TNG300-1 simulation but applied to the cluster regime, TNG-Cluster cap-
tures both large-scale environmental effects and the fine-grained baryonic
physics of the ICM, including AGN feedback, metal enrichment, and mag-
netic fields. This enables statistically robust predictions for observable prop-
erties such as X-ray scaling relations, SZ signatures, and radio synchrotron
emission, while preserving the detailed physics usually only available in
small zoom-in samples.

strengths and limitations . The chief strength of zoom-in simulations lies
in their ability to combine cosmological context with exquisite internal resolution.
They allow detailed, case-by-case analyses of complex processes such as mergers,
AGN feedback, or turbulence, which cannot be resolved in large uniform-volume
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runs. However, their computational expense restricts the number of clusters that
can be studied in this way, limiting their statistical power. As such, zoom-in studies
are best viewed as complementary to large-volume hydrodynamical simulations:
the former provides physical insight into cluster microphysics, while the latter
supplies the statistical framework for cosmological applications.

In summary, zoom-in simulations act as high-resolution laboratories for study-
ing the internal structure and evolution of individual galaxy clusters. They are
especially valuable for understanding the signatures of mergers and feedback pro-
cesses, which strongly shape the thermodynamic and non-thermal properties of
the ICM.

4.3 comparative analysis of simulation types

The three classes of cosmological simulations: dark-matter-only (DMO), full hy-
drodynamical volumes, and zoom-in cluster simulations, offer complementary in-
sights into structure formation. Each comes with characteristic strengths and limi-
tations in terms of resolution, scale, and the range of physical processes included.
Here we provide a comparative overview, focusing on aspects most relevant to
galaxy cluster studies.

Resolution and Scale

DMO simulations are computationally the most efficient, allowing the largest cos-
mological volumes and the highest statistical precision for halo mass functions
and large-scale clustering. For example, the Millennium Simulation evolved more
than 1010 particles in a (500h−1 Mpc)3 box [159], enabling precise predictions of
halo abundances and clustering. However, since baryons are neglected, these runs
cannot resolve internal cluster structure or predict observable gas and galaxy prop-
erties.

Hydrodynamical simulations add baryons but at the cost of computational ex-
pense. To maintain large volumes, such as the (300Mpc)3 box of TNG300 [114],
the spatial and mass resolution must be coarser than in DMO runs. This resolution
is adequate for statistical studies of cluster populations and scaling relations, but
insufficient to fully resolve multiphase gas, AGN jets, or galaxy morphologies.

Zoom-in simulations invert this trade-off: by focusing on a single halo (or a lim-
ited set), they achieve spatial and mass resolutions an order of magnitude higher
than uniform-volume runs. For example, the Phoenix Project resolved subhalos
down to dwarf-galaxy scales within clusters [53], while the TNG-Cluster project
[113] reaches baryonic resolution comparable to TNG300-1 but for hundreds of
clusters. The drawback is limited sample size and cosmic variance, since only a
small fraction of the cosmic volume is resimulated at high resolution.

Physical Processes Included

DMO simulations track only gravitational dynamics, and thus their predictions are
limited to quantities such as halo mass functions, merger trees, and dark matter
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density profiles. They form the gravitational backbone of structure formation but
cannot directly connect to observables such as X-ray luminosities or SZ signals.

Hydrodynamical simulations incorporate baryonic physics via sub-grid mod-
els for radiative cooling, star formation, stellar and AGN feedback, and chemical
enrichment [43, 144, 167]. These processes enable them to reproduce cluster gas
fractions, metallicities, and scaling relations between mass, temperature, and lumi-
nosity. However, differences in feedback implementations lead to systematic vari-
ations across codes, as highlighted by the nIFTy cluster comparison project [146].
Moreover, additional physics; magnetic fields, cosmic rays, plasma transport, are
only beginning to be included in a systematic way [119, 126].

Zoom-in simulations push the frontier by applying high resolution to these
baryonic processes within cluster environments. They allow detailed studies of
turbulence, shocks, cold fronts, AGN jet–ICM coupling, and galaxy transforma-
tions within dense environments. TNG-Cluster, for example, can simultaneously
resolve galaxy populations and the thermodynamic state of the ICM across hun-
dreds of massive clusters, while retaining cosmological context [113]. Nevertheless,
zoom-ins still rely on sub-grid prescriptions and cannot capture cluster-to-cluster
statistical variations at the level of full-volume simulations.

In summary, DMO, hydrodynamical, and zoom-in simulations are best viewed
as complementary approaches: DMO establishes the dark matter scaffolding; hy-
drodynamical simulations add baryonic realism over large statistical samples; and
zoom-ins provide high-resolution laboratories for detailed cluster physics. Together,
they form a hierarchy of tools for connecting theoretical models of structure for-
mation to the rich observational data available for galaxy clusters.

4.4 the next generation : illustristng and tng-cluster simulations

The past decade has seen remarkable progress in cosmological simulations, mov-
ing from dark-matter-only frameworks and early hydrodynamical runs toward
comprehensive models that simultaneously capture large-scale structure, galaxy
formation, and intracluster medium physics. Among these, the IllustrisTNG project
and its cluster-focused extension, TNG-Cluster, represent the state of the art. These
simulations combine cosmological volumes with sophisticated baryonic physics
implementations, providing unprecedented opportunities to confront theory with
observations of galaxy clusters across the electromagnetic spectrum.

Overview of IllustrisTNG Simulations

The IllustrisTNG (The Next Generation) project is the successor to the original
Illustris simulation [167]. It consists of three large cosmological volumes; TNG50,
TNG100, and TNG300, evolved with the moving-mesh code Arepo [155], each
balancing resolution against volume [114, 127]. Compared to its predecessor, TNG
includes several major advances in baryonic modeling:

• AGN feedback: a dual-mode model that injects thermal energy at high accre-
tion rates and kinetic winds at low accretion rates, stabilizing cluster cores
and preventing catastrophic cooling flows [169].
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• Stellar feedback: improved prescriptions for galactic winds driven by super-
novae and stellar feedback, regulating star formation in galaxies across a
wide mass range [127].

• Magnetic fields: full magnetohydrodynamics (MHD) via the ideal MHD equa-
tions, allowing self-consistent amplification of primordial seed fields and
their impact on galaxy and ICM evolution [119].

• Chemical enrichment: tracking of nine metal species from Type Ia/II super-
novae and AGB stars, enabling direct comparison with observed metallicity
patterns in the ICM and galaxies.

These improvements allow IllustrisTNG to reproduce a broad range of observ-
ables: galaxy stellar mass functions, morphologies, colors, star-formation histories,
gas fractions, and cluster scaling relations. The three volumes are complementary:
TNG50 achieves exquisite resolution within a 50Mpc box, TNG100 balances resolu-
tion and statistics, and TNG300 covers a (300Mpc)3 volume, providing hundreds
of massive clusters for statistical analyses. In this sense, IllustrisTNG offers both
a cosmologically representative framework and the physical fidelity required for
cluster astrophysics.

Advantages of TNG-Cluster Simulations

While TNG300 contains hundreds of massive clusters, their resolution is limited
compared to the smaller-volume TNG50 and TNG100 runs. To overcome this, the
TNG-Cluster project [113] applies a zoom-in approach to 352 galaxy clusters with
M200c ⩾ 1014M⊙, achieving baryonic resolution comparable to TNG300-1. This
enables detailed modeling of the intracluster medium, merger-driven shocks, and
feedback-regulated cores, while maintaining a statistically significant sample size.

Key advantages of TNG-Cluster include:

• Resolution: sufficient to resolve both cluster galaxies and ICM substructure,
including shocks, turbulence, and magnetic-field amplification.

• Physics: incorporates the full IllustrisTNG baryonic model (stellar and AGN
feedback, MHD, metal enrichment) tuned for the cluster regime.

• Statistics: unlike previous zoom-in studies of individual clusters, TNG-Cluster
provides hundreds of high-resolution clusters, enabling population-level com-
parisons to X-ray, SZ, and radio surveys.

Together, IllustrisTNG and TNG-Cluster represent the cutting edge of cosmolog-
ical simulation capabilities, offering both the breadth of cosmological volumes and
the depth of targeted zoom-in studies. They serve as essential theoretical labora-
tories for interpreting observations of clusters in the current era of large surveys.
In this thesis, we will return to these simulations in detail in Part iii, where both
IllustrisTNG and TNG-Cluster will be discussed comprehensively.

4.5 concluding remarks

The study of galaxy clusters through cosmological simulations has progressed
enormously over the past four decades. The earliest dark-matter-only (DMO) N-



4.5 concluding remarks 33

body simulations demonstrated the viability of the hierarchical ΛCDM framework
and provided precise predictions for halo abundances and clustering. However, by
neglecting baryons they could not connect directly to observed cluster properties
such as X-ray luminosities, gas fractions, or radio emission.

The next stage, large-volume hydrodynamical simulations, incorporated bary-
onic processes; e.g. cooling, star formation, stellar and AGN feedback, and chemi-
cal enrichment, into cosmological contexts. Projects such as Illustris, EAGLE, and
Horizon-AGN significantly advanced our understanding of the intracluster medium
and galaxy populations, reproducing many observed scaling relations and enrich-
ment patterns. At the same time, systematic uncertainties in sub-grid physics high-
lighted the need for careful model calibration and inter-code comparisons.

Zoom-in simulations provided a complementary avenue, achieving far higher
spatial and mass resolution within selected cluster environments. These runs al-
lowed detailed study of merger-driven shocks, turbulence, cold fronts, and feedback-
regulated cores. Yet, their limited sample sizes restricted statistical applications. As
a result, they have been most effective as physical laboratories, deepening our un-
derstanding of the microphysics of the ICM.

The most recent generation, exemplified by IllustrisTNG and its cluster-focused
extension TNG-Cluster, combines the breadth of large cosmological volumes with
the depth of high-resolution zoom-ins. These simulations implement state-of-the-
art baryonic physics, including AGN feedback, galactic winds, chemical enrich-
ment, and magnetohydrodynamics, and provide both statistically representative
cluster samples and detailed internal structure. TNG-Cluster, in particular, delivers
unprecedented resolution across hundreds of clusters, enabling direct comparison
with X-ray, SZ, and radio surveys.

In summary, cosmological simulations now constitute indispensable laborato-
ries for studying galaxy clusters. They reveal how the gravitational backbone pro-
vided by dark matter interacts with baryonic physics to shape the thermodynamic,
chemical, and non-thermal state of the ICM. This dual perspective, statistical and
physical, makes simulations essential tools for interpreting observations of cluster
populations and their mergers. In the following parts of this thesis, we will lever-
age these simulations, in particular IllustrisTNG and TNG-Cluster, to investigate
the merger histories of clusters and their observable signatures in the X-ray and
radio regimes.
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M A C H I N E L E A R N I N G

5.1 deep learning introduction

Deep learning has emerged as one of the most transformative paradigms in mod-
ern machine learning, enabling computers to autonomously discover and extract
complex, hierarchical features from raw data. It is a subfield of machine learning
that leverages artificial neural networks (ANNs) composed of multiple processing
layers, loosely inspired by the interconnected structure of biological neurons in
the human brain [56, 90]. Unlike traditional machine learning methods, which rely
heavily on hand-crafted features, deep learning models learn representations di-
rectly from data by optimizing millions (and sometimes billions) of parameters
across deep architectures. This capacity to model highly non-linear and abstract
relationships has led to breakthroughs across disciplines ranging from computer
vision and natural language processing to medical imaging, astrophysics, and cos-
mology.

basic structure of neural networks . At the core of deep learning lies
the artificial neuron, which computes a weighted sum of its inputs and passes it
through a non-linear activation function such as the rectified linear unit (ReLU),
sigmoid, or hyperbolic tangent. Neurons are organized into layers: an input layer,
multiple hidden layers, and an output layer. Stacking many hidden layers allows
the network to learn increasingly abstract and complex features, a property often
referred to as representation learning. The universal approximation theorem guaran-
tees that even shallow neural networks can approximate any continuous function
under certain conditions, but in practice deep networks achieve far more efficient
and scalable representations for high-dimensional data [66].

architectural innovations . Several specialized architectures have been
developed to address different data modalities:

• Convolutional Neural Networks (CNNs) are designed for grid-like data (e.g.,
images, maps, or 3D cubes). Convolutional layers apply learnable filters that
exploit spatial locality and parameter sharing, enabling efficient feature ex-
traction at multiple scales. CNNs have revolutionized computer vision, with
landmark architectures such as AlexNet [86], VGGNet [153], and ResNet [61]
achieving human-level or better performance on image classification bench-
marks. In astrophysics, CNNs have been used to classify galaxy morpholo-
gies [39], detect gravitational lenses [125], and identify transient events in
time-domain surveys [147].

• Recurrent Neural Networks (RNNs) and their gated variants such as Long Short-
Term Memory (LSTM) units [63] and Gated Recurrent Units (GRUs; [33]) are
tailored for sequential and temporal data. By maintaining hidden states that
evolve with input sequences, RNNs capture temporal dependencies crucial
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for tasks such as language modeling, speech recognition, and time-series pre-
diction. In astrophysics, RNNs have been used for analyzing variable stars,
and exoplanet transit detection.

optimization and training . Training deep networks requires minimizing
a loss function that quantifies the discrepancy between predictions and ground
truth. This is achieved through gradient-based optimization, typically using stochas-
tic gradient descent (SGD) and its adaptive extensions such as Adam [79], RM-
SProp [103], and Adagrad [168]. The backpropagation algorithm efficiently com-
putes gradients of the loss with respect to millions of network parameters, enabling
scalable learning. To prevent overfitting and improve generalization, techniques
such as dropout, batch normalization, weight decay, and data augmentation are
commonly employed.

impact across disciplines . The impact of deep learning extends far be-
yond traditional computer science. In natural sciences, it is rapidly becoming in-
dispensable: in astronomy, deep learning has been applied to galaxy classification,
gravitational wave detection, cosmological parameter inference, and simulation-
based surrogate modeling [9, 116]. Its ability to process high-dimensional, noisy,
and incomplete data makes it especially well-suited for astrophysical applications,
where observational data are often sparse or uncertain. Moreover, deep learning
is increasingly coupled with physical models and simulations, forming the foun-
dation of hybrid approaches that combine data-driven learning with theoretical
priors.

In summary, deep learning provides a flexible and powerful framework for ex-
tracting complex patterns from data. Its architectures ranging from convolutional
to recurrent models, enable the analysis of images, sequences, and other struc-
tured inputs at unprecedented levels of accuracy. In astrophysics, these methods
are now central to tackling some of the most challenging problems, from under-
standing galaxy morphologies to constraining cosmological models. In the follow-
ing sections, we will introduce extensions of deep learning that are particularly
relevant to this thesis, including self-supervised learning methods and conditional
invertible neural networks.

5.2 self-supervised learning

One of the main limitations of supervised deep learning is its reliance on large
labeled datasets. In many scientific domains, including astrophysics, labels are ex-
pensive, uncertain, or altogether absent: for instance, galaxy morphologies may
require expert visual classification, and merger histories of galaxy clusters are not
directly observable. This motivates self-supervised learning (SSL), a paradigm that
leverages the intrinsic structure of data itself to provide supervisory signals with-
out human annotation [70, 89].

general principles . Self-supervised learning constructs pretext tasks; auxil-
iary prediction tasks whose solutions require the network to learn meaningful
representations of the data. Examples in computer vision include predicting the
relative positions of image patches, colorizing grayscale images, or solving jigsaw
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puzzles [40, 115, 176]. The key idea is that, by learning to solve these surrogate
tasks, the network develops generalizable feature representations that can then be
transferred to downstream tasks such as classification, regression, or clustering,
even when only limited labeled data are available.

contrastive learning . Among the various SSL approaches, contrastive learn-
ing has emerged as the most powerful and widely adopted framework in computer
vision and beyond [29, 57, 60]. Contrastive methods are built on the idea of learn-
ing representations that maximize agreement between different views of the same
data point (positive pairs) while minimizing agreement with representations of
other data points (negative pairs). Formally, given an encoder network fθ that
maps an input x to a representation z = fθ(x), the objective is to learn a represen-
tation space where

sim(zi, zj) ≫ sim(zi, zk),

for positive pairs (i, j) of the same underlying sample under different augmenta-
tions, and negatives (i,k) drawn from other samples. The similarity function is
often the normalized dot product (cosine similarity).

core elements of contrastive learning . Several components determine
the success of contrastive learning:

• Data augmentations: Strong, stochastic augmentations (e.g., random cropping,
flipping, color distortion, blurring) create different “views” of the same im-
age, forcing the encoder to learn invariant features. The choice and diversity
of augmentations are critical for performance [29].

• Contrastive loss: The most common formulation is the InfoNCE loss, which
normalizes similarity scores across all positives and negatives within a batch.
This encourages clustering of positive pairs while repelling negatives in the
representation space.

• Negative sampling and memory banks: Methods such as MoCo (Momentum
Contrast) [60] address the need for large and diverse negatives by main-
taining a dynamic memory bank or queue of past representations, allowing
contrastive learning with manageable batch sizes.

• Non-contrastive extensions: More recent methods such as BYOL (Bootstrap
Your Own Latent) [57] and SimSiam [30] achieve strong performance with-
out explicit negatives, instead relying on asymmetric architectures and stop-
gradient operations to avoid representational collapse.

scientific relevance . Contrastive learning is particularly attractive for as-
trophysics and cosmology, where unlabeled data are abundant but labeled sets
are scarce or subjective. By leveraging augmentations appropriate to scientific data
(e.g., rotations, noise injection, smoothing), one can train encoders that learn rep-
resentations of galaxy images, cluster X-ray/radio maps, or cosmological simu-
lations without requiring explicit labels. These representations can then be used
for downstream tasks such as cluster classification, merger state identification, or
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simulation-based inference of physical parameters. Recent studies have demon-
strated that contrastive learning can rival or even outperform supervised train-
ing in low-label regimes, while also producing embeddings that transfer robustly
across datasets and observational conditions [1, 28, 49].

In summary, self-supervised learning, and contrastive learning in particular, pro-
vides a principled and scalable way to extract scientific knowledge from large
unlabeled datasets. Its ability to learn invariant, semantically meaningful features
makes it a natural fit for applications in astrophysics, where the cost of labeling is
high but the potential for representation learning is enormous. In this thesis, we
will build upon these methods to analyze cluster simulations and develop models
capable of connecting raw observables to the physical histories of galaxy clusters.

5.3 conditional invertible neural networks

In Bayesian statistics, the goal of inference is to obtain the posterior distribution of
latent variables x (here unobservable cluster properties such as merger mass ratios,
timescales, or pericenter distances) given observed data c, such as X-ray or radio
maps. Bayes’ theorem provides the formal relation:

p(x|c) =
p(c|x)p(x)

p(c)
, (5)

where p(x) denotes the prior distribution over latent variables, p(c|x) is the likeli-
hood of observing c given x, and p(c) is the evidence or marginal distribution of
observables [13].

In principle, one could compute p(c|x) for a given physical model and thus
directly evaluate p(x|c). In practice, however, for complex astrophysical systems
such as galaxy clusters, the likelihood is intractable. The mapping from merger
histories to observables is highly non-linear, and depends sensitively on projec-
tion effects [84]. For this reason, we must turn to the framework of likelihood-free
inference, where cosmological simulations provide paired samples (x, c) of galaxy
cluster merger properties properties and their observables properties or radio/X-
ray maps. A machine learning model is then trained to approximate the posterior
p(x|c) directly from these samples. It is important to emphasize that such learned
posteriors are always constructed relative to the prior and marginal distribution
encoded in the training data [6].

Traditional regression models such as multilayer perceptrons (MLPs), trained
with a mean-squared error (MSE) loss, can only approximate point estimates cor-
responding to the posterior mean [56]. This approach implicitly assumes a bijective
mapping from observables to latent variables, or at most Gaussian-like uncertain-
ties around them. However, in reality, clusters with nearly identical X-ray mor-
phologies may have experienced very different merger histories, while projection
effects can make the same system appear very different depending on orientation.
Thus, the full posterior distribution p(x|c); including multimodality and correla-
tions between parameters, is required for a meaningful characterization of cluster
assembly histories [6].

normalizing flows . Normalizing flows (NFs) provide a flexible way to model
complex distributions while retaining exact likelihood evaluation [69]. The idea is
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to represent a complicated target distribution by applying a sequence of invertible
and differentiable transformations to a simple base distribution. Let z ∼ pZ(z) de-
note a latent variable with tractable density (usually Gaussian), and let x = fθ(z) be
the output of an invertible neural network fθ parameterized by θ. By the change-
of-variables formula, the density of x is

pX(x) = pZ(f
−1
θ (x))

∣∣∣∣∣det
∂f−1

θ (x)

∂x

∣∣∣∣∣ . (6)

Because fθ is bijective and differentiable by construction, both density evaluation
and sampling are efficient: one can map from z → x (generation) and from x → z

(inference) with exact likelihoods.

conditional flows and cinns . While standard flows model the uncondi-
tional distribution p(x), many scientific problems require conditional distributions
p(x|c), where c denotes conditioning variables (e.g., observables or measurements).
From a Bayesian perspective, the posterior is written as Equaiton 5; direct eval-
uation is generally impossible for high-dimensional astrophysical problems, but
conditional flows can learn this distribution directly.

Conditional Invertible Neural Networks (cINNs) [6] extend normalizing flows
by explicitly conditioning the transformations on c. They define an invertible map-
ping

f : (x, c) 7→ z, z ∼ N(0, I),

where x are latent cluster properties and c are the observables (e.g., X-ray or radio
images). Because f is invertible, posterior samples can be drawn as

x = f−1(z, c), z ∼ N(0, I).

Thus, the complex posterior p(x|c) is mapped to a tractable Gaussian prior in
latent space, and the inverse transformation recovers x samples conditioned on
new observables c.

training objective . CINNs are trained by minimizing the negative log-likelihood
(NLL) of the latent variables z = f(x, c) under the Gaussian prior:

LNLL =
1

2
∥z∥2 − log |det J|, (7)

where J = ∂f(x, c)/∂x is the Jacobian of the transformation. This objective ensures
that z follows N(0, I) and that the network correctly models the posterior p(x|c)

[44].

implementation and applications . For practical implementations we em-
ploy the FrEIA framework [4], a PyTorch-based library for invertible neural net-
works. CINNs and related conditional flows have already been applied in astro-
physics and cosmology, for example to reconstruct initial conditions of large-scale
structure [106], to perform cosmological parameter inference from weak lensing
[68], to infer the assembly history of simulated galaxies in IllustrisTNG [50], and
to model galaxy–halo connections [83]. Their strength lies in combining Bayesian
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rigor (explicit posteriors and likelihoods) with the flexibility of deep learning, en-
abling principled uncertainty quantification in regimes where traditional regres-
sion is inadequate.

In this thesis, we employ CINNs to model the posterior distributions of galaxy
cluster merger parameters x conditioned on multi-wavelength observables (radio
or X-ray maps) or scalar observable propertiesc. This approach enables not only
point predictions of merger properties, but also a full characterization of their un-
certainties and degeneracies; providing a more complete and scientifically robust
description of cluster assembly histories.
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6
R AT I O N A L E

6.1 scientific motivation

Why infer cluster merger histories from images?

Galaxy clusters assemble hierarchically through mergers. These events inject grav-
itational energy into the ICM, driving shocks, turbulence, and bulk flows that re-
shape both the thermal X–ray emitting plasma and the non–thermal, synchrotron–bright
relativistic component [84, 98]. The timing, geometry, and energetics of a cluster’s
most recent mergers imprint themselves on its projected morphology: peaked or
disturbed X–ray surface brightness, ellipticity and substructure in the core and out-
skirts, and the presence and layout of radio relics/halos tied to shock acceleration
and ageing [19, 98, 179]. Recovering merger parameters, (e.g. time since (or to) peri-
center, collision velocity, mass ratio, and pericenter distance) from these images
therefore offers a direct window into the dynamical state and recent assembly of
the most massive bound structures in the Universe.

This inference is scientifically valuable for at least four reasons:

1. Dynamical state as a hidden variable. Merger phase and geometry strongly
influence widely used mass–observable relations (e.g. scatter and bias in
X–rays). Identifying where a system sits in its merger timeline helps disen-
tangle astrophysical variance from cosmological signal [132].

2. Baryonic physics and feedback. Shocks and turbulence influence cooling,
metal transport, magnetic field amplification, and cosmic–ray acceleration.
Linking observed structures to merger parameters sharpens tests of ICM mi-
crophysics and AGN feedback models [19, 98].

3. Multi–wavelength synergy. Thermal X–ray and non–thermal radio morpholo-
gies respond differently to the same event (e.g. cores versus shock–traced
relics). Joint inference exploits their complementarities to constrain the same
underlying dynamics [19, 179].

4. Survey–scale forecasting and follow–up. Fast, image–based posteriors on
merger stage and geometry can prioritize systems for deeper, expensive ob-
servations (e.g. high–resolution spectroscopy, weak lensing) at phases of max-
imal diagnostic power [132, 150].

From a practical standpoint, imaging is the most abundant, homogeneous, and
cost–effective mode of observation across surveys. Deep spectroscopy or tailored
hydrodynamical modeling can constrain individual systems, but do not scale to
thousands of clusters. In contrast, modern X-ray and radio surveys deliver large
archival image sets with uniform processing, enabling statistical studies, if we can
translate 2D morphology into 3D merger physics with quantified uncertainty [132].

This thesis takes that route. Namely, we want to see whether it is possible to learn
the merger parameters of galaxy clusters by only using maps (e.g. X-ray, radio

43
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or joint). We use cosmological hydrodynamical simulations for constructing the
intrinsic maps, and then design a self–supervised (contrastive learning) pipeline to
learn morphology–aware embeddings from the X–ray and radio maps (separately
and jointly). In the next step, we then condition a conditional invertible neural network
(cINN) on the learned embeddings to infer posterior distributions over merger
parameters. In doing so, we turn abundant imaging into probabilistic constraints
on cluster assembly, at scale and with quantified uncertainty [6, 29].

Challenges: projection effects, sparsity of labels, degeneracies

Inferring a cluster’s 3D merger history from 2D images is intrinsically ill–posed.
Three intertwined difficulties dominate:

projection effects .

• Random orientation and triaxiality. The same merger, viewed at different an-
gles, can produce dramatically different morphologies. In X–ray, line–of–sight
integration (∝

∫
n2
e dℓ) smears substructure and boosts dense cores; in radio,

thin shock sheets brighten when viewed edge–on and can look as halo–like
features when seen face–on [136, 179].

• Superposition and confusion. Multiple subhaloes, filaments, or foreground/back-
ground groups along the sight line can mimic or hide merger signatures (e.g.
double–relic counterparts hidden by projection or limited FOV) [136, 179].

• Instrumental realism. PSF/beam convolution, mosaicking, depth variations,
and redshift–dependent dimming (plus BCMB ∝ (1 + z)2 losses for radio)
reshape the apparent morphology, further entangling physics with observing
conditions [132, 179].

sparsity (and noisiness) of labels .

• No ground truth in observations. Key dynamical quantities (e.g., time since
pericenter, collision velocity, pericenter distance, mass ratio), are not directly
observable. Proxy labels (centroid shifts, concentration, relic curvature) are
informative but incomplete and survey–dependent [27, 100].

• Small, heterogeneous samples. Well–imaged X–ray+radio cluster samples re-
main modest and selection–biased (e.g. relic detectability depends on depth
and orientation), limiting supervised training and risking overfitting to sur-
vey idiosyncrasies [132, 179].

• Sim-to-real domain shift. Simulations furnish merger “truths” and abun-
dant images, but subgrid physics, resolution, and emissivity modeling can
mismatch reality. Bridging this gap requires representations that are robust
to such shifts and a probabilistic mapping rather than hard classification [37,
120].

physical and geometric degeneracies .

• Non–uniqueness of the inverse map. Different parameter combinations can
yield visually similar images: e.g. (higher mass ratio, larger pericenter) vs.
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(lower mass ratio, smaller pericenter) at another viewing angle; recent peri-
center with weak B vs. older shock with stronger B in radio; core sloshing vs.
minor merger in X–ray [98, 179].

• Coupled nuisance physics. Magnetic-field strength/topology, electron accel-
eration efficiency, and ageing shape radio brightness independently of dy-
namics; cooling, AGN feedback, and multiphase structure modulate X–ray
cores. These nuisance factors widen posteriors if unaccounted for [19].

• Bounded/fractional targets. Parameters like mass ratio are intrinsically bounded
and highly skewed, making absolute errors appear small while relative errors
blow up at the extremes; discrete snapshot timing likewise inflates percent-
age errors for small intervals [132].

implications for methodology. These challenges motivate (i) self–supervised
representation learning to exploit abundant unlabeled images and become ro-
bust to projection/augmentation; (ii) multi wavelength study (thermal X–ray +
non–thermal radio) to break geometry/physics degeneracies; and (iii) simulation–based,
probabilistic inference (cINNs) that return full, possibly multi–modal posteriors
rather than point estimates, explicitly acknowledging non–uniqueness [6, 29, 37].
In practice, at the first step, for getting the embedding, our contrastive learning
pipeline, uses a set of augmentations that mimic observational variance, treat or-
thogonal projections as independent views to expose orientation variability and re-
turns a representation space for X-ray, radio, and joint maps. Next, a mixture–of–experts
trains local cINNs on different regions of the representation space, to leverage on
clustered diversity. The final outcome, will be posteriors which will give a prob-
abilistic distribution of the merger parameters, and maximum-a-posteriori (MAP)
estimates which can be used to measure the relative error.

6.2 methodological gap

Limits of hand-crafted indicators

Classical morphology metrics (e.g., X–ray concentration/cuspiness, centroid/COM
shifts, power ratios, and radio relic length/curvature/polarization), compress 105−
106 pixels into a few scalars. Similar approaches have been employed by, for ex-
ample, Lee et al. [92], who estimate the time since collision from the observed
separation of a pair of radio relics. While compact, these summaries discard multi-
scale spatial information that is important for disentangling merger timing, three-
dimensional geometry, and mass partition. Their values are also sensitive to anal-
ysis choices (e.g., aperture definitions, background modeling, PSF/beam convo-
lution, exposure depth, and redshift), and are further confounded by projection
and line-of-sight superposition effects [100, 132, 136, 179]. Consequently, methods
that operate directly on image-level data (e.g., radio and X-ray maps) and preserve
morphological information promises to provide stronger and more informative
constraints.
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Why self-supervised representation learning?

We use contrastive self-supervision (e.g., SimCLR) to learn an image-level embed-
ding that serves as the conditioning input to the cINN. This addresses two needs:

1. Dimensionality reduction for the cINN: mapping 105 − 106 input pixels into a
compact vector of O(102 − 103) descriptors makes the conditioning signal
tractable, stabilizes training, and reduces overfitting that would arise from
feeding raw images into the flow.

2. Morphology-preserving organization: the learned representation groups images
by physically similar structure (e.g. cores, shocks, tails, asymmetries), while
suppressing nuisance variation (absolute flux, arbitrary orientation), effec-
tively distilling the information most relevant for downstream inference [29,
132]. Physics-aware augmentations encode the desired invariances, and en-
coders integrate thermal (X-ray) and non-thermal (radio) channels without
handcrafted features [49, 50].

Why simulation-based inference with cINNs?

Simulations are indispensable because the physical variables that define a galaxy
cluster’s merger parameters (e.g., time of collision, pericenter distance, relative
velocity, and mass components) are not directly observable, and each real cluster is
seen only as a single, projected snapshot of a Gyr-scale process [84]. Cosmological
simulation of galaxies such as TNG-Cluster provide us with time–resolved merger
trees and self–consistent 3D thermodynamic and magnetic fields from which one
can synthesize X–ray and radio maps across snapshots and viewing angles. This
enables (i) large, controllable training dataset with causal labels; (ii) systematic
coverage of parameter space (mass ratios, impact parameters, redshifts); and (iii)
explicit study of projection and selection effects by rendering multiple lines of
sight for the same event [132, 136]. Simulation–anchored datasets permit principled
simulation–based inference: flows such as cINNs can be trained on paired merger
parameters and conditions (such as observable or maps) samples ((x, c)) and be
validated, and further applied on survey images [37].

Merger inversion is many–to–one and inherently degenerate; many different
interaction histories can yield similar morphologies, so point estimates are mis-
leading. Conditional invertible neural networks (cINNs) model the full posterior
p(x | c) with exact likelihoods via invertible flows, capturing non–Gaussianity
and multi–modality while amortizing inference over large datasets [6, 37]. Relative
to alternatives: deterministic regressors (no uncertainty), ABC/rejection SBI (sam-
ple–inefficient), or VAEs/GANs (no tractable likelihood), cINNs yield precise and
accurate posteriors suited to survey–scale image→physics inference. In short: con-
trastive learning helps us by compressing high–dimensional maps into informative
representation space; and cINN will further lift those features into full posteriors
over merger parameters.
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6.3 thesis tools , objectives and research questions

Tools

The primary prerequisite is a cosmological hydrodynamical simulation. In this
work, we use TNG-Cluster, and its 352 zoom-in halos [113], sampled over 0 ⩽ z ⩽ 1

and projected along three orthogonal lines of sight. The X-ray dataset consists of
intrinsic emission maps produced for TNG-Cluster by Nelson et al. [113], with a
field of view of ±2 R200c and a line-of-sight depth of 2 R200c. The radio dataset
is the intrinsic synchrotron maps at νobs = 1.4GHz, obtained by post-processing
TNG-Cluster shock surfaces as produced by Lee et al. [91], using the same ±2 R200c

field of view. For each (halo, snapshot) pair, observable quantities are extracted
directly from the simulation, while next/last merger parameters are taken from
the Lee et al. [91], and defined with respect to the time of the first pericenter
passage.

Objectives

1. Learn morphology–aware representations from images.

a) Train SimCLR on intrinsic TNG-Cluster maps for (i) X–ray, (ii) radio, and
(iii) paired X–ray+radio inputs with channel–consistent augmentations.

b) Quantitatively assess the representations via kNN retrieval, UMAP or-
ganization, and label–aware hexbin overlays for halo, ICM, and merger
properties.

2. Perform simulation–based inference of merger physics.

a) Develop a conditional invertible neural network (cINN) with rational–quadratic
spline couplings to infer posteriors p(x | c) for last/next–merger param-
eters: collision time, collision velocity, mass ratio, pericenter distance,
and component masses.

b) Compare conditioning on embeddings learnt from X–ray, radio, and
joint maps.

3. Improve performance with a Mixture–of–Experts (MoE).

a) Partition the learned embedding space with k–means (fit on training
data only) and train expert–local cINNs.

4. Establish evaluation and error quantification.

a) Use posterior–vs–truth heatmaps, prior–posterior contraction, and MAP
error statistics (medians, 10-90% envelopes).

b) Test cross–target correlations with corner plots (posterior samples, MAPs,
ground truths) for physical consistency.

Primary research questions

1. Main Question: Fundamentally, can merger parameters be reliably inferred
from imaging data alone? Furthermore, is it more effective to condition the
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cINN directly on raw maps, or to first extract and use learned representations
derived from those maps?

2. Representation quality: Do self–supervised SimCLR encoders trained on
cluster maps learn morphology–aware embeddings that (i) form smooth neigh-
borhoods and (ii) exhibit coherent, physically meaningful gradients when
colored by halo/ICM/merger labels?

3. Modality comparison: How does conditioning on radio embeddings compare
to X–ray embeddings for inferring merger parameters? Is joint (X–ray+radio)
conditioning strictly better than either modality alone, or does one modality
dominate?

4. Inference fidelity: When conditioning the cINN on learned embeddings, are
posteriors p(x | c) accurate and precise across targets (collision time/velocity,
mass ratio, pericenter, component masses)? How do posterior–vs–truth his-
tograms, and prior–posterior contraction behave?

5. Last vs. next merger: Does inference performance differ between past (last)
and future (next) merger parameters, and if so, which targets degrade most
when forecasting?

6. Against scalar baselines: How does representation–conditioned inference
compare to conditioning on scalar observables (core entropy, concentration,
offsets, etc.) in terms of precision and accuracy?

Relation to Prior Work

Two recent studies Eisert et al. [49, 50] apply contrastive learning and conditional
invertible networks to galaxy images to infer aspects of their assembly histories.
They pretrain on large optical/near-IR cutouts of galaxies to learn representation
spaces correlated with physical observable properties, and then, at inference time,
condition their cINN on scalar summaries distilled from the images. In addition,
their cINN flow uses GLOW-style affine coupling layers.

In this thesis we tackle a different regime, galaxy clusters, and a different data
design (thermal X-ray and non-thermal radio, including paired inputs). More-
over, our cINN is conditioned directly on the learned representation vectors from
contrastive pretraining, not on scalar observable properties. Moreover, the cINN
pipeline employs rational–quadratic spline coupling blocks. The goals are related
(recovering merger/assembly histories), but the methodology and implementation
are different: the entire pipeline (e.g., preprocessing and the contrastive learning
code, conditioning strategy, and the cINN code) was developed independently for
this work, without reusing code from Eisert et al. [49, 50].

Another related study, is Chadayammuri et al. [28] which is a cluster-centric
study that uses contrastive learning to connect simulated cluster X-ray maps to
merger–related properties. Chadayammuri et al. [28] train contrastive learning on
these maps and show that the learned representation space correlate with merger
related quantities without needing to rely on morphology scalars. Downstream,
they attach deterministic heads (linear probes or shallow regressors/classifiers)
to the embedding to predict merger proxies and to retrieve semantically simi-
lar systems. The method does not model full posteriors: there is no conditional
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flow/cINN and no uncertainty. It also remains single-modality (X-ray only), with-
out radio maps or paired multi-wavelength training.

In spirit it is close to our aims: learn feature spaces directly from simulated
cluster maps and use those features to probe dynamical state or merger history.
However in this thesis, we condition a cINN directly on learned representation
space of radio maps, and paired (radio + X-ray) maps besides X-ray. Moreover,
this thesis applies the cINN on the representation space, returning posteriors and
a distribution for merger parameters instead of only point estimations.

6.4 thesis roadmap

The thesis proceeds as multiple, end–to–end pipelines whose intermediate artifacts
(maps, embeddings, and trained experts) flow forward from one chapter to the
next:

1. Data & physical setup (Chs. 13, 17). We define the simulation inputs and
map–making for the two observables: intrinsic X–ray surface–brightness maps
from TNG-Cluster (made by Nelson et al. [113]), and intrinsic synchrotron ra-
dio maps constructed with the shock–based emissivity model (made by Lee
et al. [91]). Each chapter specifies the detail description on how the maps
are built, their fields of view, projection axes, redshift snapshots, pixelization,
and per–modality normalizations.

2. Self-supervised representations (Chapters 14, 18, 20). We train SimCLR
separately on X–ray and radio maps, then on paired two–channel inputs. For
each setting we extract 512-D embeddings (or fused codes), probe their struc-
ture (UMAP grids, kNN), and show astrophysical gradients when colored
by labels. Output: fixed, morphology–centric embeddings for every map in
single- and joint-modality variants.

3. Inference model (Chapters 11.1, 15.1-15.3). We introduce the conditional
invertible neural network (cINN), detail conditioning on embeddings, and
construct a Mixture–of–Experts (MoE) partition in representation space via
k-means. We describe training (NLL objective), sampling, and postprocess-
ing (MAP, priors, and posteriors). Output: an accurate, expert–conditioned
p(x | c) for merger parameters.

4. X–ray–conditioned results (Part v, Chapter 16). Using the X–ray embed-
dings as conditions, we evaluate posterior calibration, MAP accuracy, and
cross–target correlations for last– and next–merger parameters. We analyze
strengths/weaknesses versus scalar baselines and visualize representative
posteriors. Output: validated inferences from thermal morphology alone.

5. Radio–conditioned results (Part vi, Chapter 19). We repeat the full evalua-
tion with radio embeddings, comparing against X–ray. We show systemati-
cally tighter posteriors for several targets and assess robustness across the
test population. Output: validated inferences from non–thermal morphology
and a quantitative modality comparison.

6. Joint X–ray+Radio conditioning (Part vii, Chapter 21.5). We join modalities
(using joint contrastive learning code) and assess whether joint condition-
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Figure 3: Schematic overview of the thesis workflow. Starting from simulated galaxy clus-
ter properties derived from TNG-Cluster, two approaches are pursued to infer
merger properties: (i) a direct route using scalar observables as cINN inputs, and
(ii) an image-driven route where contrastive learning compresses X-ray, radio, or
combined X-ray+radio maps into morphology-aware representations for condi-
tioning the cINN.

ing improves over single–modality results. We report posterior calibration,
MAP accuracy, and correlation recovery for last/next mergers, highlighting
intermediate performance relative to radio–only. Output: a multi–wavelength
inference pathway.

7. Appendices (Appendix .1 and .2). We extend the cINN to predict a wide set
of observables from embeddings (halo/BCG/ICM/dynamical), provide simi-
lar diagnostic plots as for unobservable.

The overall workflow of this thesis is summarized in Figure 3. The diagram
shows how simulation inputs are used to infer galaxy cluster merger properties via
two different approaches: (i) a scalar–observable route, where a cINN is applied
directly to the scalars; and (ii) an imaging route, where X-ray/radio maps are first
encoded into a morphology-aware representation by contrastive learning, and the
cINN is then conditioned on these embeddings.
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7.1 illustris tng and tng-cluster project

Numerical Framework: AREPO and Ideal MHD

The IllustrisTNG simulations are built on the moving-mesh code AREPO, which
solves the coupled equations of self-gravity and (magneto-)hydrodynamics on an
unstructured Voronoi tessellation [127, 155]. Hydrodynamics is advanced with a
finite-volume, Godunov scheme using directionally unsplit second-order time in-
tegration and Riemann solvers at cell interfaces; the mesh moves approximately
with the local flow (arbitrary Lagrangian-Eulerian), providing adaptive spatial
and temporal resolution without preferred directions [155]. Gravity is computed
with a Tree-PM scheme, while the Friedmann-Lemaître background sets cosmic
expansion [127]. IllustrisTNG evolves ideal magneto-hydrodynamics (MHD), ad-
vecting the cell-averaged magnetic field and allowing self-consistent amplification
of a weak seed field by structure formation and turbulence [127]. This combina-
tion is central for cluster applications because it resolves shocks and mixing with
low advection errors, while MHD controls magnetic pressure support, anisotropic-
transport proxies, and the magnetization level of the ICM [113].

Cosmology

TNG adopts a flat ΛCDM cosmology consistent with Planck Collaboration et al.
[129], with parameter values Ωm = 0.3089, Ωb = 0.0486, ΩΛ = 0.6911, σ8 = 0.8159,
ns = 0.9667, and H0 = 67.74 km s−1 Mpc−1 [114, 129]. These parameters set the
halo mass function and growth histories against which the baryonic model oper-
ates; for clusters, they fix the expected abundance of M200c ⩾ 1014M⊙ systems
and the timing and other properties of mergers that we will try to infer in this the-
sis. In particular, Ωm and ΩΛ govern the overall growth rate of cosmic structure,
determining how rapidly massive clusters assemble at different epochs [25]. The
power spectrum normalization σ8 controls the amplitude of density fluctuations,
directly affecting the number of massive progenitors available for merging [163].
The spectral index ns influences the scale dependence of these fluctuations, shap-
ing the relative contribution of mergers across mass scales [47]. Finally, H0 sets the
relationship between redshift and cosmic time, which fixes the temporal spacing
between merger events and the physical scales over which clusters can interact [65].
Together, these parameters establish the statistical backdrop for the cluster merger
rate, mass ratio distribution, and redshift evolution that our analysis will probe.

Galaxy Formation Physics

The IllustrisTNG model couples hydrodynamics and gravity to a calibrated, phys-
ically motivated set of unresolved (subgrid) processes [127, 169].

53
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• Radiative processes and star formation. Gas cooling and heating account for
both primordial and metal-line emission, in the presence of a time-dependent
UV/X-ray background. At high densities, gas is treated with the Springel–Hernquist
two-phase ISM model, where stars form stochastically according to an effec-
tive pressure law [157]. Even though the cores of massive clusters remain hot,
pockets of gas with short cooling times can still form, leading to multiphase
condensation. The star-formation model therefore regulates the residual star
formation in brightest cluster galaxies (BCGs) and the consumption of con-
densed cold gas.

• Chemical enrichment. The simulation follows nine elemental species (H, He, C,
N, O, Ne, Mg, Si, Fe), with time-resolved mass and metal return from core-
collapse supernovae (SNe II), Type Ia supernovae (SNe Ia), and asymptotic
giant branch (AGB) stars, using updated stellar yields and lifetimes [127].
These metals regulate gas cooling (and hence the cooling time, tcool) and
determine the strengths of X-ray line emission.

• Stellar (galactic wind) feedback. Relative to the original Illustris model, TNG
launches winds isotropically, injects a controlled thermal fraction, and uses
updated velocity/energy scalings (including metallicity dependence and a
floor), improving regulation of stellar mass and the metal budget in infalling
groups and satellites [127]. For clusters, the primary impact is indirect but im-
portant: by setting the stellar mass of satellites and the BCG, winds determine
the overall stellar-to-gas partition, the amount and distribution of metals pre-
processed in infalling halos, and the fuel available for central cooling flows
between AGN episodes. These also influence satellite gas removal and the
ICM’s enrichment/entropy budget during group–group and group–cluster
mergers [113, 127].

• SMBHs and AGN feedback. Black holes are seeded in massive halos, grow by
gas accretion and mergers, and inject energy in two modes. At high accre-
tion rates the model uses thermal (quasar-mode) feedback; at low Edding-
ton ratios it switches to a kinetic (wind-mode) that directly imparts momen-
tum/energy to surrounding gas. This kinetic low-accretion mode, introduced
specifically in TNG, efficiently couples to hot halo atmospheres at late times,
keeping massive galaxies quenched and restructuring the central ICM en-
tropy/density [127, 169]. For galaxy clusters this ingredient is pivotal: it com-
petes with radiative cooling to set cool-core versus non-cool-core states, can
reheat or displace low-entropy gas after mergers, and shapes the observables
(e.g. central entropy, cooling time) which will be later discussed in Part iv
[113].

• Magnetic fields. Regarding the magnetic fields, IllustrisTNG evolves a weak,
uniform primordial seed field that is amplified by compression, shear, and
small-scale dynamos [127]. While the exact seed value is unimportant for
galaxy statistics, evolving ideal MHD yields cluster-scale magnetic fields and
morphologies that affect buoyancy, mixing, and the confinement of AGN-
driven structures. For merger studies, MHD controls how sloshing/turbu-
lence grow and decay, how cold fronts persist, and how quickly metal/en-
tropy inhomogeneities are erased, and therefor influencing the longevity of
cool cores post-merger [113].



7.2 tng-cluster : setup, data products 55

From IllustrisTNG to TNG-Cluster

Galaxy clusters lie on the exponentially suppressed tail of the halo mass function,
so any uniform-volume simulation must trade numerical resolution against statis-
tical power at the highest masses. Within the base IllustrisTNG boxes, even the
largest (TNG300; ∼ 300 Mpc per side) contains only a limited number of Coma-
mass systems at z = 0, constraining population inferences at M200c ⩾ 1015M⊙
[113, 127]. The TNG-Cluster project addresses this by constructing a large, mass-
representative sample of cluster halos while keeping the AREPO numerics and the
galaxy-formation physics unchanged from TNG, thereby offering population-level
statements at the top end of the mass function and clean, like-for-like comparisons
across mass and redshift [113]. Detailed aspects of the TNG-Cluster are presented
in the next section.

7.2 tng-cluster : setup, data products

Setup

TNG-Cluster draws its targets from a dark-matter-only parent simulation of side
length 1 Gpc (TNG-Cluster-Dark). Halos are identified at z = 0 and selected
purely by mass in narrow 0.1dex bins to yield an approximately flat sampling
in logM200c over log(M200c/M⊙) ≃ 14.3–15.4. Above M200c ⩾ 1015M⊙ all halos
in the parent box are included, providing volume-limited statistics at the rarest
masses. In total, 352 regions are re-simulated; the 1 Gpc parent (roughly 36× the
TNG300 volume) yields of order ninety halos above 1015M⊙ [113].

For each selected cluster, all FoF-member DM particles at z = 0 are traced back
to the initial redshift to define the Lagrangian region. An adaptive oct-tree marks
occupied cells, which are then expanded to enclose ∼ 3× the original Lagrangian
volume; this conservative padding suppresses late-time incursion of low-resolution
particles into the virial region. The refined patch is built at 4× higher linear resolu-
tion than the parent (i.e. 64× better mass resolution), and embedded in a progres-
sively coarser buffer comprising eight discrete mass levels.

The zoom-in simulations start from a large dark-matter-only (DMO) box, 1Gpc
on a side (TNG-Cluster-Dark). From this box, candidate halos at redshift z = 0

are chosen based only on their mass. For each selected halo, all the dark matter
particles in its FoF group at z = 0 are traced back to the initial conditions to
identify the halo’s Lagrangian region (the patch of the early universe that collapses
to form the halo). This region is built using an adaptive oct-tree grid. First, all cells
containing the traced particles are marked. Then the marked volume is expanded
until it is about three times larger than the original. This padding ensures that no
low-resolution (i.e. massive) particles drift into the halo’s virial radius at late times.
Within this high-resolution patch, the grid is further refined: the linear resolution
is increased by a factor of four, so each cell is 43 = 64 times smaller in volume
(and mass) compared to the parent box. The surrounding space is then filled with
particles of progressively lower resolution, arranged in eight discrete mass levels
that smoothly increase with distance from the target halo [113]

The initial conditions are generated with the Zel’dovich approximation using
N-GenIC. Starting from a uniform particle grid, small displacements are applied



56 tng-cluster simulation

to imprint the desired density fluctuations. Outside the zoom-in region, the large-
scale phases of the parent simulation are preserved so that the tidal environment re-
mains identical. Within the refined region, however, additional small-scale modes
are introduced, providing the extra power needed to resolve structure at higher
resolution [113, 127]. This setup improves the effective spatial (mass) resolution
inside the zoom-in volume by about a factor of 4 (64) relative to the parent DMO
run, intentionally matching the resolution of TNG300-1. Afterwards, possible con-
tamination from low-resolution particles is measured (Appendix A in [113]) and
found to be negligible.

Baryons are added at the universal fraction in the high-resolution region and the
unchanged IllustrisTNG galaxy-formation model is employed: radiative cooling
and a time-dependent UV/X-ray background, star formation in a pressurized two-
phase ISM, time-resolved chemical enrichment from SNe II/Ia and AGB stars (nine
tracked elements), an updated galactic-wind model, and the dual-mode SMBH
feedback scheme [127, 169]. Cosmological parameters follow the Planck 2015/2016

ΛCDM set used throughout TNG (see Section 7.1). Mass and force resolutions
are held to strict parity with TNG300-1 (identical mean gas-cell and DM parti-
cle masses; collisionless softenings comoving at early times transitioning to fixed
physical at late times; gas with adaptive softenings tied to cell size), ensuring like-
for-like comparisons of ICM structure and merger-driven transients across the joint
TNG300+TNG-Cluster ensemble [113, 127].

The simulations include hydrodynamics, gravity, and the full galaxy-formation
physics model of IllustrisTNG (see Section 7.1). The zoom-in regions are run at
exactly the same mass resolution as TNG300-1: a mean baryonic cell mass of
mb ≃ 1.2 × 107,M⊙ and a dark matter particle mass of mDM ≃ 6.1 × 107,M⊙
(quoted for h = 0.6774). Gravitational softenings follow the same prescriptions: for
collisionless species, softenings are comoving at high redshift and switch to fixed
physical values at late times, reaching ϵDM,⋆ = 1.5 kpc at z = 0; for gas, softenings
adapt to the instantaneous cell size with a comoving minimum of ∼ 0.25 ckpc/h
[113, 114]. By construction, this strict consistency ensures that any differences be-
tween halos of the same mass in TNG300 and the TNG-Cluster ensemble reflect
variations in their assembly histories, not numerical artifacts.

Data Products

TNG-Cluster follows the IllustrisTNG snapshot strategy with 100 outputs from high
redshift to z = 0, comprising 20 full and 80 mini snapshots [113, 114]. Full snapshots
store the complete set of particle/cell fields for all types, while mini snapshots
provide a reduced, analysis-focused subset (per-field availability is documented
in the public data specifications) [114]. The 20 full snapshots correspond to the
snapshot numbers, redshifts, and cosmic times listed in table 1 scanning z ≃ 12 →
0.

The halo and galaxy identifications used throughout this thesis follow the stan-
dard two-stage procedure of a friends-of-friends (FoF) group finder applied to the
dark matter (DM) field, followed by the SUBFIND algorithm to decompose each
FoF group into a bound central object and its substructures [38, 114, 158]. In all
TNG and TNG-Cluster runs, FoF is executed with a linking length b = 0.2 times
the mean inter-particle separation on DM particles; baryonic resolution elements
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Snapshot Redshift Time (Gyr)

2 11.9802 0.3702

3 10.9756 0.4177

4 9.9966 0.4747

6 9.0023 0.5471

8 8.0122 0.6396

11 7.0054 0.7639

13 6.0108 0.9317

17 4.9959 1.1772

21 4.0079 1.5404

25 3.0081 2.1454

33 2.0020 3.2845

40 1.4955 4.2929

50 0.9973 5.8780

59 0.7001 7.3141

67 0.5030 8.5866

72 0.3999 9.3891

78 0.2977 10.2986

84 0.1973 11.3224

91 0.0994 12.4664

99 0.0000 13.8027

Table 1: Full snapshot numbers and their corresponding redshifts and cosmic times in
TNG-Cluster.

(gas, stars, black holes) are then attached to the FoF group of their nearest DM par-
ticle. Within each FoF group, SUBFIND identifies locally overdense, gravitationally
self-bound subhalos and computes their properties including masses, centers, and
kinematics [114].

For each FoF halo, we define the center as the position of the particle with
the minimum gravitational potential energy within the group (i.e., the center-of-
potential). We identify the brightest cluster galaxy (BCG) with this central subhalo
by default, while noting that it is usually, but not always, the most massive sub-
halo [114]. Throughout this work, the primary aperture is the critical overdensity
sphere at ∆ = 200 or ∆ = 500, defined by the radius R∆c (R200c or R500c)for which
the mean enclosed density equals ∆ρc(z), and the corresponding enclosed mass
is M∆c(M200c or M500c). Within each FoF halo, SUBFIND ranks self-bound sub-
structures by their number of bound elements, with the first entry corresponding
to the central or primary subhalo.
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8.1 mass-redshift demographics

Having established our data products and mass/centering conventions in the pre-
vious section, we begin by exploring how many halos we have at which masses
and redshifts. This provides the statistical context for all subsequent results and
makes explicit the consequences of the z = 0 mass-targeted selection. Figure 4 and
Tables 2-3 (binned counts) summarize the demographics. At z = 0, TNG-Cluster
contributes 95 halos with log10(M200c/M⊙) ⩾ 15 (versus 3 in TNG300-1), and 204

vs. 38 in 14.5 ⩽ log10M200c < 15. The lowest bin is dominated by TNG300-1 (239

vs. 53), reflecting the design goal of a flat mass z = 0 TNG-Cluster selection. By
z = 0.5 the number of > 1015M⊙ halos drops to 16 (TNG-Cluster) + 1 (TNG300-1),
and by z=1 there are none, consistent with hierarchical growth.

Mass range (TNG300) z = 0 z = 0.5 z = 1 z = 2

14 ⩽ log10(M200c/M⊙) < 14.5 239 134 48 3

14.5 ⩽ log10(M200c/M⊙) < 15 38 14 2 0

log10(M200c/M⊙) ⩾ 15 3 1 0 0

Table 2: Number of halos in different log10(M200c/M⊙) ranges for TNG300 at selected
redshifts.

Mass range (TNG-Cluster) z = 0 z = 0.5 z = 1 z = 2

14 ⩽ log10(M200c/M⊙) < 14.5 53 159 198 31

14.5 ⩽ log10(M200c/M⊙) < 15 204 156 48 0

log10(M200c/M⊙) ⩾ 15 95 16 0 0

Table 3: Number of primary zoom halos in different log(M200c/M⊙) ranges for TNG-
Cluster at selected redshifts.

8.2 icm and its properties

Baryon fraction

We begin by quantifying how baryons are partitioned among hot gas, cold gas,
and stars as a function of halo mass. For each halo at z=0 we record the total
baryon fraction, the total gas fraction, and their decomposition into a hot phase
(T > 106k) and a cold phase (T < 106k), alongside the stellar fraction. The total
baryonic mass is defined as the sum of gas, stellar, and black-hole masses (the

59
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Figure 4: Cluster mass function for primary zoom targets of TNG-Cluster simulation (blue)
stacked on top of the TNG300 across z=0, 0.5, 1, 2, with the bin width of 0.1 dex.
TNG-Cluster supplies the vast majority of M200c ⩾ 1015M⊙ systems, enabling
ensemble analyses of rare mergers. Redshift panels visualize the progenitor-
biased nature of the z = 0-selected sample at earlier times, a caveat we account
for when presenting evolutionary trends.
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Figure 5: Baryon and phase fractions vs. halo mass at z=0. Component masses within
R200c, normalized by fbM200c, for TNG300-1 (filled points) and TNG-Cluster
(open points). Lines show running medians in logarithmic mass bins. The gas
fraction increases with halo mass and approaches the cosmic value at the top
end, the stellar fraction declines, and the hot phase dominates the ICM budget
across the cluster regime.

latter being negligible in clusters). All fractions are normalized by the product of
the halo mass and the cosmic baryon fraction, i.e.

fcomp =
Mcomp

fbM200c
, fb = Ωb/Ωm ≃ 0.157,

with running medians shown for each component (Figure 5).
Figure 5 combines TNG300-1 (filled markers) and TNG-Cluster (open markers)

to cover the full cluster mass range. Four trends emerge. (i) The gas fraction rises
with halo mass and approaches the cosmic value at the top end, as expected, since
deeper potentials better retain and thermalize baryons. (ii) The stellar fraction de-
clines with mass, reflecting the reduced integrated star-formation efficiency in mas-
sive halos. (iii) Within the gas, the hot phase dominates across the cluster regime,
while the cold component is dominant at all M200c ⩽ 1013M⊙ and becomes neg-
ligible at the highest masses. (iv) In the cluster regime the total baryon fraction
closely tracks the hot-gas fraction, indicating that most of the ICM mass budget
resides in X-ray–emitting plasma rather than in stars or cold gas [3, 32, 133].

These mass trends and their scatter are the imprint of near self-similar gravi-
tational physics modulated by feedback and assembly. As halos grow, baryon re-
tention increases and the ICM becomes more thermalized, increasing the fgas and
decreasing the f⋆ [32].
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Thermal structure and X-ray definitions

As discussed in figure 5, hot, diffuse plasma in the intracluster medium (ICM)
contains the bulk of baryons in clusters and therefor, it radiates predominantly in
X-rays. At the temperatures characteristic of rich clusters (kT ∼ 2–10 keV), the emis-
sivity is well approximated by thermal bremsstrahlung (free–free emission), with
metal lines contributing increasingly toward group scales and in cool cores. X-ray
measurements therefore encode the ICM’s density, temperature, and metallicity.

For this chapter only and for simplicity, we compute X-ray luminosities with the
bolometric bremsstrahlung estimator of Navarro, Frenk, and White [111]:

LX = 1.2× 10−24(µmp)
−2mg

Ngas∑
i=1

ρiT
1/2
i erg s−1 (8)

where mp is the proton mass, µ ≃ 0.6 for a fully ionized primordial plasma,
and the sum runs over hot gas elements (Ti ⩾ 106 K). Here ρi and Ti denote
the mass density and keV temperature of the i-th gas particle, and mg is the gas
mass. In our moving–mesh data the natural implementation replaces mg by the
individual cell mass mi in the sum. It is important to note that the Equation 8

provides a bolometric, metal–independent estimate appropriate for hot clusters
where bremsstrahlung dominates; it neglects line emission (important below ∼ 3

keV) and bandpass/K-corrections.

Thermal structure: temperature and X-ray radial profiles

With the X-ray definition in Equation 8 established, we characterize the spherically
averaged ICM at z = 0 for the primary zoom-in halos of TNG-Cluster. We build 3D
radial profiles in shells about the potential minimum (halo’s center), normalizing
radii by R200c and color–coding each halo by logM200c. Specifically in figure 6,
we show (i) the mean shell temperature ⟨T⟩(r) and (ii) the shell X-ray luminosity
LX(r) from the bremsstrahlung estimator (Equation 8).

Temperature and X-ray profiles show strong outer self-similarity. They also dis-
play clear mass ordering. Inside ⩽ 0.2 R200c the behavior diverges strongly, re-
flecting core state and recent dynamical activity. Because LX ∝ ρ2T1/2 (free–free
emission), X-ray profiles are very sensitive to gas clumping and to cool, dense
cores. This sensitivity explains the larger scatter at small radii. The steep central
rise is mainly a cool–core signature: high density and modest temperatures boost
the emissivity. Sloshing on the other hand does not create the cusp, instead, it intro-
duces azimuthal asymmetries, cold fronts, and small “wiggles” in the spherically
averaged profile. It can also offset the X-ray peak from the potential center, which
further broadens the inner scatter [98]. The mass coloring confirms a simple trend:
at fixed r/R200c, more massive systems are hotter and have brighter cores.

Temperature and X-ray maps

Having established the radial trends, we turn to two–dimensional ICM morphol-
ogy. We use the most massive zoom-in halo of TNG-Cluster at z=0 (HaloID 0),
and construct paired maps within a square of side 2R500c, centered on the poten-
tial minimum. Gas cells belonging to the FoF halo are projected along the line of
sight onto an N×N grid (N=300).
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For temperature map, for each pixel we compute the mean ⟨log T⟩ (K). And for X-
ray map, per pixel we sum the cell luminosities from the bolometric bremsstrahlung
estimator (Equation 8) and divide by the pixel area to obtain SBX in erg s−1 kpc−2.

The X-ray panel exhibits a bright central peak and a smooth global decline with
radius, punctuated by faint substructures. The temperature field is comparatively
smooth, with coherent gradients and localized hot/cool patches that trace recent
stirring or minor accretion. Together, the maps reveal asymmetries and small fea-
tures that spherical profiles can average out.
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Figure 6: ICM radial structure at z = 0. (a) Normalized radial temperature profiles ⟨T⟩(r)
and (b) X-ray luminosity profiles LX(r) versus r/R200c for TNG-Cluster zoom-
in halos colored based on the M200c. More massive halos are hotter and more
X-ray luminous at fixed scaled radius; outside the core, profiles decline gently
with clear mass ordering, while the inner ⩽ 0.2R200c shows substantial diversity
indicative of cool-core vs. non–cool-core states. In panel (b), the steep central rise
and enhanced small-scale fluctuations reflect the LX ∝ ρ2T1/2 dependence and
substructure/sloshing.
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Figure 7: Halo 0 at z = 0: emission structure within R500c. Top: mean ⟨log T⟩ (K). Bot-
tom: log X-ray surface brightness from the free–free Bremstrehlung (Eq. 8) in
erg s−1 kpc−2. The field spans [−R500c,+R500c] in both directions and is cen-
tered on the potential minimum. The bright core and gentle outer gradient are
evident in X-rays; with small asymmetries and substructures appearing in both
panels.
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Figure 8: Global ICM scaling at z=0. Top: mass–weighted mean temperature within R200c

vs. M200c. Bottom: bolometric X-ray luminosity (Eq. 8) within R200c vs. M200c.
The T–M relation is tight, while LX–M shows larger intrinsic scatter owing to the
ρ2 dependence that emphasizes core structure, clumping, and recent dynamical
activity [84, 133].

Mass–observable scalings: T–M and LX–M

We now turn from profiles to global ICM observables at z=0. For each primary
zoom-in halo in TNG-Cluster we measure a mass–weighted mean temperature
within R200c and a bolometric X-ray luminosity using equation 8. Radii are cen-
tered on the potential minimum. Figure 8 shows the resulting T–M and LX–M
relations.

The T–M relation is tight and monotonic; hotter halos are more massive, which
is consistent with virial self-similarity (T ∝ M2/3; Kaiser [72]) and relatively in-
sensitive to core physics when temperatures are mass-weighted or core–excised
[165]. By contrast, LX–M also rises with mass but shows much larger intrinsic
scatter because LX ∝ ρ2T1/2: the density-squared weighting amplifies core struc-
ture, clumping, and substructure that vary with AGN feedback and recent mergers
[84, 133]. It is important to not that our LX is bolometric and metal–independent by
construction (Equation 8). Band-limited observational comparisons (e.g. 0.5–2 keV)
will differ depending on T and metallicity.
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8.3 brightest cluster galaxy

BCG mass components versus halo mass

We identify the BCG with the central galaxy in a cluster as explained in 7.1 and
extract its: total BCG Mass, black hole, gas, dark matter, and stellar components.
Figure 9 shows each component as a function of M200c for the z=0 primary TNG-
Cluster zoom-in halos; points are individual systems and thick lines indicate run-
ning medians in logarithmic mass bins.

• DM: dominates the BCG’s bound mass and rises nearly in lockstep with
M200c, tracing the deepening inner potential.

• Gas: ∼ 0.5–1.0 dex below the total; including halo-to-halo scatter because of
different cooling and AGN feedback feedback efficiency across clusters.

• Stars: increase sub–linearly with M200c; typically ∼ 2 dex below the total
and ∼ 1 dex below the gas curve, indicating the low in-situ efficiency and
merger-driven growth.

• BH: correlated with BCG mass but gravitationally negligible; ∼ 10−2–10−3 of
M⋆,BCG (and ∼ 10−4 − 10−5 of the BCG’s total mass).

These magnitudes provide a practical baseline for linking BCG growth modes to
core thermodynamics and AGN energetics.

Relaxation Criteria and M12

Following Ayromlou et al. [8], we use the (dimensionless) definition of offset mag-
nitude:

xoff =
|rMBP − rCM|

R200c
, (9)

where rMBP is the position of the most–bound particle (the halo center defined by
the potential minimum), rCM is the center of mass of the halo. As used in Ayromlou
et al. [8] the systems are classified as relaxed for xoff ⩽ 0.1, and not-relaxed or
disturbed for xoff > 0.1, indicating recent mergers [8].

On the other hand we define M12 within each halo as the ratio of the gravita-
tionally bound masses of the two most massive subhalos at the same time, M12 =

M1/M2, where M1 and M2 are the masses of the most– and second–most–massive
subhalos. Where M12 ≫ 1 indicates a dominant central with a much smaller sec-
ondary (minor accretion regime). Because a near equal mass pair (M12 ∼ 1 − 3)
moves the center of mass relative to the potential minimum, and as a result it
makes the distance |rMBP − rCM| larger because the center of mass, sits larger from
the dominant subhalo’s core (in most cases). As a result, lower M12 values are
expected to correlate with larger offsets xoff and vice versa.

Figure 10 shows the subhalo mass ratio M12 versus the offset magnitude xoff

on log10 axes. The purple band marks relaxed halos (xoff ⩽ 0.1) and the pink
band non–relaxed halos (xoff > 0.1). We find a clear tendency for larger offsets
at low M12 (two similarly massive subhalos) and smaller offsets at high M12 (one
dominant subhalo).
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Figure 9: BCG mass components vs. halo mass (M200c) at z=0. For each primary zoom
in galaxy cluster in TNG-Cluster simulation at z = 0, we select the central galaxy
and plot its bound total (purple), BH (dark blue), gas (light blue), dark matter
(green), and stellar masses (yellow) against M200c. Thick lines show running
medians.
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Figure 10: Subhalo mass ratio versus offset magnitude. Points show halos; M12 is the
ratio of the most– to second–most–massive subhalo bound masses within the
halo, and the offset magnitude is defined as in equation 9 following Ayromlou
et al. [8]. Background shading indicates the relaxation cut at xoff = 0.1 (purple:
relaxed; pink: non–relaxed). Systems with two comparably massive subhalos
(low M12) preferentially show large offsets, while halos with a dominant central
(high M12) concentrate at small offsets, with broad intrinsic scatter.
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8.4 thermodynamic state of the icm : cool–core diagnostics

To classify the thermodynamic state of clusters we adopt six standard cool–core
(CC) diagnostics used in Lehle et al. [93]. Using this we can distinguish strong
cool cores (SCC), weak cool cores (WCC), and non–cool–cores (NCC) using widely
employed thresholds as will be discussed further.

To classify cluster thermodynamic states we adopt the six cool–core (CC) diag-
nostics and thresholds defined by Lehle et al. [93]. Central quantities (tcool, K0, ne)
are evaluated in 3D within a spherical aperture of radius 0.012 R500c about the
gravitational potential minimum; the cuspiness uses the slope at r = 0.04 R500c;
the X-ray concentrations use 0.5–5 keV luminosities in projected apertures of (40,
400) kpc (physical) or (0.15 R500c, R500c) (scaled). Following Lehle et al. [93], the
gas selection includes only gravitationally bound, non–star-forming, actively cool-
ing cells with T > 106 K. We briefly summarize the criteria used by Lehle et al. [93]
to characterize cluster cool–core states.

(i) central entropy, K0 . The specific entropy proxy is defined as

K(r) = kB T(r)ne(r)
−2/3 [keV cm2],

with the central value K0 ≡ K(r0) measured at r0 = 10 kpc. Clusters are classified
as SCC if K0 ⩽ 22 keV cm2, WCC if 22 < K0 ⩽ 150 keV cm2, and NCC if K0 >

150 keV cm2.

(ii) central cooling time , tcool,0 . The isobaric cooling time is defined as

tcool(r) =
3

2

(ne +ni) kB T

ne nH Λ(T ,Z)
,

evaluated at r0. The classification is SCC for tcool,0 < 1 Gyr, WCC for 1 ⩽ tcool,0 ⩽
7.7 Gyr, and NCC for tcool,0 > 7.7 Gyr.

(iii) central electron number density, ne . The electron number den-
sity at r0 is denoted ne = ne(r0) (cm−3). Clusters are classified as NCC if ne ⩽
5.1 × 10−3 cm−3, WCC if 5.1 × 10−3 < ne,0 ⩽ 1.51 × 10−2 cm−3, and SCC if
ne,0 > 1.51× 10−2 cm−3.

(iv) cuspiness of the density profile , αn . The cuspiness parameter is
defined as

α ≡ −
d lnne

d ln r

∣∣∣∣
r=0.04R500c

.

The adopted classification is NCC for αn ⩽ 0.5, WCC for 0.5 < αn ⩽ 0.75, and
SCC for αn > 0.75.

(v) x-ray concentration (physical apertures), c
phys
SB . The concentra-

tion parameter is defined as

cphys =
L0.5−5 keV
X (rp < 40 kpc)

L0.5−5 keV
X (rp < 400 kpc)

Clusters are classified as NCC if cphys ⩽ 0.075, WCC if 0.075 < cphys ⩽ 0.155,
and SCC if cphys > 0.155.
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Figure 11: Cool–core diagnostics Distribution. Distributions of the six CC indicators with
SCC (sky blue), WCC (purple), and NCC (pink) regions shaded using the thresh-
olds listed in section 8.4 for the 352 primary zoom-in halos at z = 0. The diag-
nostics based on profiles (K0, tcool, ne, α) and those based on imaging (cphys,
cscaled) give a consistent partition of the sample into SCC/WCC/NCC, with dif-
ferences reflecting sensitivity to core size and projection.

(vi) x-ray concentration (scaled apertures), csca
SB . A redshift- and

size-independent measure is given by

cscaled =
L0.5−5 keV
X (rp < 0.15r500c)

L0.5−5 keV
X (rp < r500c)

Clusters are classified as NCC if cscaled ⩽ 0.2, WCC if 0.2 < cscaled ⩽ 0.5, and SCC
if cscaled > 0.5.

The first four diagnostics rely on 3D thermodynamic profiles (T , ne) and are
closely related (low K0 ⇔ short tcool ⇔ high ne and steep αn). The latter two are
purely imaging–based and robust to modest uncertainties in spectral modeling.

In figure 11, for all of the primary zoom-in halos of TNG-Cluster simulation at
z = 0, we can see the histograms for each diagnostic with the SCC/WCC/NCC
regions shaded in the background in blue/purple/pink.

8.5 merger identification and measurement

In this work, for defining merger parameters, we use the data made by Lee et al.
[91]. The mergers are recorded for the 352 main halos with 0 ⩽ z ⩽ 1 . Throughout,
the main cluster is the most massive FoF host in the high-resolution region, and a
subcluster (collider) is any subhalo that has undergone a first pericenter passage with
respect to the main cluster. The mergers are recorded when the main halo has a
M500c ⩾ 1014M⊙ and the subcluster has a halo mass M500c ⩾ 1013M⊙. In general
there are ∼ 2000 merger events, with the distribution of main and subcluster masses
that can be seen in figure 12.

For determining the time of collision (first pericenter passage), and pericenter
distance, we use the time evolution of their orbit (D(t)) as seen in figure 13. Since
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the time between snapshots in the TNG-Cluster simulations are large, for getting
the correct time of pericenter passage, a quadratic function is fit to the first local
minimum [91]:

D(t) ≃ at2 + bt+ c ,

where the pericenter passage is at its minimum at its tperi = −b/2a. The pericenter
distance follows as [91]:

Dperi = D(tperi) = c−
b2

4a
.

The M500c of the main cluster is also taken at the closest snapshot to tperi. How-
ever, sometimes the group ID is not defined at this snapshot, but these values will
be handled as explained in section 10.1. The collision velocity is also calculated as
the time derivative of halo separation (2at+ b) at the tperi. [91]

As a subhalo falls into the host potential, tidal stripping and ram–pressure re-
duce its bound mass, making the instantaneous mass at pericenter a poor proxy
for the impacting mass. To correctly identify the subcluster mass that triggered the
merger, the time where the subcluster reached its pick mass before the pericenter
passage is chosen, as can be seen from figure 13. At this time, both the subcluster’s
mass, and the merger mass ratio µ = Msub,peak/Mmain is calculated [91].
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Figure 12: Event demographics. Host mass at collision, M500c, versus the subcluster’s pre-
pericenter peak mass Msub for all recorded mergers in the Lee et al. [91] catalog.
Each point illustrates one merger with its color pointing to the redshift at which
the collision has happened.
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G A L A X Y C L U S T E R P R O P E RT I E S

9.1 observables

In this section, we describe the input observable properties extracted from the
TNG-Cluster simulation. These properties can be grouped into four categories:

1- Halo-Scale Cluster Properties

All halo-scale observables are measured on Friends-of-Friends (FoF) halos, identi-
fied using the standard algorithm with a linking length of b = 0.2 applied to the
dark matter particle distribution (see section 8). In table 4, these will be the prop-
erties: R500c, M500c, Gas Mass, Gas Metallicity, H Fraction, He Fraction, Stellar
Metallicity, and Velocity.

2- Brightest Cluster Galaxy (BCG) Properties

The BCG properties are measured on the central Subfind subhalo within each
FoF halo. By central we mean the subhalo containing the particle of minimum
gravitational potential—it is not necessarily the most massive subhalo in the Fof
halo (as explained in 8). In table 4, these will be the properties: BCG Total Mass,
BCG Stellar Mass, BCG SFR, Central BH Mass, and Central BH Accretion Rate.

3- Intracluster Medium (ICM) Core Properties

We use the ICM properties derived by Lehle et al. [93], which were employed to
characterize the cool-core state. Each property is measured on non–star-forming
gas with T > 106 K and gravitationally bound to the central halo. In table 5, this
will be the properties: Central Number Density, Central Cooling Time, Central
Entropy, α Slope, Cphys, and Cscaled.

4- Global and Dynamical Diagnostics

In addition to structural and thermodynamic quantities, we include three global
and dynamical diagnostics that capture the evolutionary state and relaxedness of
each halo. In table 5, the properties are Cosmic Time, Offset Magnitude, and M12.

77
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Property Definition

R500c Galaxy cluster’s radius; centered on the halo’s
potential-minimum position, within which the mean
density equals 500 ρcrit(z).

M500c Galaxy cluster’s mass; total mass of all particles and
cells enclosed within a radius, such that the average
density inside this radius is 500× ρcrit(z).

Gas Mass Sum of the masses of all gas-type cells associated with
the FoF halo (wind-phase cells included).

Gas Metallicity Mass-weighted average metallicity of all gas cells in
the FoF halo, defined as the ratio of metal mass (ele-
ments heavier than helium) to total gas mass.

H Fraction Mass fraction of hydrogen, defined as the total mass
of hydrogen divided by the gas mass.

He Fraction Mass fraction of helium, defined as the total mass of
helium divided by the gas mass.

Stellar Metallicity Mass-weighted average metallicity of all star particles
in the FoF halo, defined as the ratio of metal mass to
total stellar mass.

Velocity The peculiar velocity of the galaxy cluster, computed
as the sum of the mass-weighted velocities of all par-
ticles and cells belonging to the FoF halo.

BCG Total Mass Total mass of all particles and cells bound to the BCG
(dark matter, gas—including wind phase—, stars and
black holes).

BCG Stellar Mass Total mass of all of the stars bound to the BCG.

BCG SFR Instantaneous star-formation rate of the BCG, com-
puted as the sum of the individual SFRs of all gas
cells within the BCG.

Central BH Mass Mass of the central black hole associated with the
BCG; excludes any surrounding gas reservoir and
evolves monotonically via the simulation accretion
prescription.

Central BH Accre-
tion Rate

Instantaneous mass accretion rate onto the BCG’s cen-
tral black hole (ṀBH).

Table 4: Halo-scale and brightest cluster galaxy (BCG) observables extracted from the TNG-
Cluster simulation. These properties trace the global structure of the halo as well
as the stellar, star-forming, and black hole content of the central galaxy.
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Property Definition

Central Number
Density

Central electron number density within a 3D aper-
ture of 0.012 r500c, computed directly as the mass-
weighted mean of ne.

Central Cooling
Time

Cooling cooling time of the ICM core,

tcool =
3

2

(ne +ni) kBT

ne niΛ(T ,Z)

evaluated as the mass-weighted mean within a 3D
aperture of 0.012 r500c.

Central Entropy Central entropy defined by K = kBTn
−2/3
e measured

in the same 0.012 r500c aperture.

α Slope Logarithmic slope of the radial electron-density pro-
file,

α = −
d lnne(r)

d ln r

∣∣∣∣
r=0.04r500c

evaluated from a 3D profile with 50 logarithmic bins
between 10−3 and 1.5 r500c.

Cphys Physical concentration defined as the ratio of X-ray
luminosities in projected apertures:

Cphys =
LX(rp < 40 kpc)
LX(rp < 400 kpc)

computed from 2D X-ray maps in the 0.5–5 keV band.

Cscaled Scaled concentration defined as the ratio of X-ray lu-
minosities in scaled apertures:

Cscaled =
LX(rp < 0.15 r500c)
LX(rp < r500c)

computed from the same 0.5–5 keV 2D maps.

Cosmic Time Cosmic time at which the cluster is considered. We
use cosmic time rather than redshift since it provides
a linear measure of time and corresponds more di-
rectly to the nearly uniform time spacing of the TNG
snapshots.

COM Offset Distance between the most-bound particle (i.e. poten-
tial minimum) and the galaxy cluster’s center of mass,
normalized by the R200c. This dimensionless offset
traces the dynamical relaxation state of the galaxy
cluster [8].

M12 Ratio of the M500c of the cluster’s most massive to the
second most massive galaxy within the same halo.

Table 5: ICM core and global dynamical observables. The ICM quantities follow the defini-
tions of Lehle et al. [93], while the dynamical diagnostics capture the evolutionary
and relaxed-ness state of each halo.
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9.2 unobservables

We use the merger-event catalog of Lee et al. [91], in which cluster mergers are
defined as interactions between a primary halo with mass M500c > 1014M⊙ and a
secondary subcluster with mass Msub > 1013M⊙. Unlike the observable properties
described in section 9.1, these quantities are inherently unobservable in real data:
they describe the intrinsic dynamical parameters of cluster mergers, which are
accessible only in simulations through knowledge of the full three-dimensional
phase-space trajectories of halos. In particular, the catalog reports the following
merger parameters at the time of first pericenter passage.

Property Definition

Collision Time Cosmic time (in Gyr) of the first pericenter passage
between the main cluster and subcluster.

Pericenter Distance Three-dimensional distance (in kpc) between the
main- and subcluster centers at first pericenter.

Collision Velocity Maximum relative peculiar velocity (in km/s) be-
tween the two halos at pericenter, derived from the
difference in their SubhaloVel vectors.

Main Cluster M500c M500c of the primary cluster at the time of first peri-
center, i.e. the FoF halo mass within R500c.

Subcluster Mass Maximum bound mass (total particles and cells) of
the subcluster, taken at the snapshot when its pre-
pericenter mass reaches its peak value.

Merger Mass Ratio Ratio of subcluster to main cluster mass at the
snapshot where the subcluster mass peaks, µ =

Msub/M500c, coll.

Table 6: Merger-event parameters as defined in the catalog of Lee et al. [91]. These “unob-
servable” quantities are accessible in simulations but cannot be directly inferred
in observations.

9.3 final sample

Our working data set comprises the 352 TNG-Cluster primary zoom-in halos and
their main–progenitor branches sampled at eight outputs spanning 0 ⩽ z ⩽ 1 (snap-
shots {99, 91, 84, 78, 72, 67, 59, 50}). For each halo and snapshot we assemble:

• Observables: quantities in table 4 and 5 measured at that snapshot.

• Merger parameters (unobservables): for each merger event recorded for each
halo in Lee et al. [91] we have different tcoll for all merger events it goes
through. For each of the target halo, two immediate events at tsnap are chosen:
the last merger with tcoll ⩽ tsnap (the most recent past event) and the next
merger with tcoll > tsnap (the nearest future event). Thus, per snapshot there
is at most one “last” and one “next” event, chosen as the closest in time on
each side (no averaging across multiple events). When present, we record
that event’s merging parameters (table 9.2).
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Figure 14: Merging vs. non–merging halos across snapshots. Step–histograms of halo
mass at eight outputs (snapshots 99 to 50) split into systems whose last recorded
merger occurred before that snapshot (MM; sky blue) and those without a prior
merger in our window (NM; pink). Bins and x–limits are shared across snap-
shots; the bottom–right panel aggregates all outputs. Counts for MM and NM
are annotated in each axis.

Figure 14 summarizes the mass demographics of merging (M; blue) and non–merging
(NM; pink) halos at each snapshot. Each panel shows step–histograms of log10M500c

with a common x–range and binning across snapshots to enable a fair, visual com-
parison; the counts for M and NM are printed in the upper left of each panel.
The ninth panel stacks all snapshots. Two qualitative trends are evident;. First, the
NM fraction increases toward earlier times (lower snapshot numbers / higher red-
shift), as expected because a smaller lookback window within z ⩽ 1 leaves fewer
halos with a recorded prior merger. Second, at fixed snapshot the merger–flagged
population increasingly dominates the high–mass tail, consistent with hierarchical
growth in which the most massive systems have rich recent accretion histories.
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10.1 preprocessing

Our learning pipeline (used identically for the baseline multilayer perceptron and
for the conditional invertible neural network) requires a clean, aligned mapping
from observable cluster properties to merger or unobservables properties (section
9.1-9.2). We therefore implement a deterministic preprocessing stage comprising:
(i) sample alignment across catalogs, (ii) principled filtering of ill-defined targets
and inputs, and (iii) variance–stabilizing transformations and standardization.

We combine the table of observable properties with the table of merger param-
eters. The merge is an inner join on a unique halo ID and snapshot, ensuring that
each row corresponds to the same galaxy clusters observed at the same cosmic
time in both spaces. Let x ∈ Rp denote the vector of observables and y ∈ Rq the
vector of merger parameters; alignment produces paired samples {(xi, yi)}

N
i=1.

Not every cluster experiences a merger within the time window and mass ranges
covered by the merger catalog; for such systems, unobservable properties as de-
fined in section 9.2 do not exist. Including these rows would mix a well-posed
conditional regression problem, p(y | x) with y defined at first pericenter, with no-
event cases requiring a different statistical treatment. To preserve a single, phys-
ically coherent target definition, we discard rows lacking any merger parameter.
This restriction yields a dataset of clusters with at least one resolved first pericen-
ter passage, i.e., systems for which y is well-defined.

To stabilize scale and reduce skewness, we work in log space for all strictly pos-
itive target merger parameters: Main Cluster M500c, Subcluster mass, Collision
velocity, and Pericenter Distance. Concretely, we take the log of all the targets ex-
cept the Collision Time and Merger Mass Ratio. An additional practical advantage
is robustness to undefined values: in rare cases the merger catalog from Lee et
al. [91], the Main Cluster M500c, has a value of −1 because the group was not
defined at the merger snapshot as explained in section 8.5. Such entries are unde-
fined in log space and therefore become missing; our filtering will also drop these
rows since they have missing values in log space. In effect, no unphysical negative
values can leak into the training set, while valid positive values are consistently
modeled in log space.

Several observables characterize the thermodynamic state of the ICM core (e.g.,
central electron density, entropy, cooling time, concentration measures) as dis-
cussed in section 9.1. These are defined on non–star-forming gas above a tempera-
ture threshold and within fixed or scaled apertures. If a system contains negligible
hot gas within the relevant aperture (e.g., due to extreme feedback episodes or
numerical sparsity), these quantities are undefined and missing. To preserve di-
mensional consistency, we therefor discard any rows missing any observable prop-
erties. This yields a feature space x that corresponds to well-measured physical
quantities.
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After filtering, we partition the dataset randomly into training, validation, and
test subsets in an 80/10/10 split. For last mergers, this results in 1627/203/203

samples; for next mergers, 1548/194/193. These same indices will be saved and
reused by both the MLP and the cINN to guarantee like-for-like comparisons. After
partitioning is complete, we then apply per-dimension z-score standardization to
both inputs and targets:

x̃ =
x − µx

σx
, ỹ =

y − µy

σy
, (10)

where (µx,σx) and (µy,σy) are the empirical means and standard deviations
on the training set. This rescaling ensures that all inputs and targets contribute on
comparable numerical scales. Without such normalization, parameters with large
absolute values or wide dynamic ranges could dominate the optimization, simply
because of their units rather than their physical relevance. Standardization there-
fore improves numerical conditioning, balances the relative influence of different
features, and supports more stable and efficient training for both the MLP and the
cINN.

We archive (i) the standardized design matrix and target matrix, (ii) the identi-
fiers linking each sample back to its halo and snapshot, and (iii) the scaling pa-
rameters (µ,σ) required for inverse transformations and unit recovery. For model
comparison and unbiased evaluation, scaling parameters are fitted on the training
split only and then applied to validation and test data, preventing information
leakage.

The resulting standardized pair (X̃, Ỹ) is used consistently by both stages of our
pipeline: an initial MLP for feature ranking/selection and the subsequent cINN for
posterior inference.

10.2 baseline mlp and ensemble training

As a supervised baseline and for downstream feature screening, we train a mul-
tilayer perceptron (MLP) to predict the merger parameters from the standardized
observable vector x̃ ∈ Rp (section 9.1). The model outputs ŷ ∈ Rq in standardized
target space; physical units are recovered via the inverse of the target standardiza-
tion.

A Multilayer Perceptron (MLP) is a feed-forward neural network that defines a
parametric mapping fθ : Rp → Rq from a p-dimensional input vector x (the ob-
servables) to a q-dimensional output vector ŷ (the merger properties). The network
consists of L layers of linear transformations and nonlinear activation functions, in-
terleaved with batch-normalization blocks to stabilize training [56]:

h(0) = x,

z(ℓ) = W(ℓ) h(ℓ−1) + b(ℓ), z̃(ℓ) = BatchNorm
(
z(ℓ)

)
,

h(ℓ) = ϕ
(
z̃(ℓ)

)
, ℓ = 1, . . . ,L− 1,

ŷ = h(L) = W(L) h(L−1) + b(L),

where:
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• W(ℓ) ∈ Rdℓ×dℓ−1 and b(ℓ) ∈ Rdℓ are the weight matrix and bias vector of
layer ℓ, with d0 = p, dL = q, and d1 = · · · = dL−1 = 256 in our architecture.

• ϕ(·) = max(0, ·) is the Rectified Linear Unit (ReLU) activation.

• BatchNorm(·) denotes a learnable affine batch-normalization transform ap-
plied before each activation.

• θ = {W(ℓ), b(ℓ), BatchNorm parameters}Lℓ=1 collects all trainable parameters.

In our implementation, the MLP consists of:

• an input layer of dimension d0 = 22 (one node per observable feature),

• three hidden layers (L− 1 = 3) of equal width d1 = d2 = d3 = 256, each block
comprising:

1. a bias-free fully connected transform z(ℓ) = W(ℓ)h(ℓ−1),

2. batch normalization on the 256 outputs,

3. a Rectified Linear Unit activation (ReLU),

h(ℓ) = max{0, BatchNorm(z(ℓ))}

• a final output layer of dimension d4 = 6, implemented as a fully connected
transform without activation, producing the six continuous merger predic-
tions.

The training and optimization in this pipeline is implemented via PyTorch frame-
work [121]. The MLP is trained via stochastic gradient descent with the Adam opti-
mizer [79], weight decay 10−4, batch size 256, employing a two-phase loss schedule
and early stopping held out on a validation set. All training is conducted on the
standardized feature and target matrices described in chapter 10.1. We now detail
each component of the training pipeline:

1. Phase I – MSE Warm-up: We minimize the mean squared error (MSE) loss,

LMSE =
1

N

N∑
i=1

∥∥ŷi − yi

∥∥2
2

,

using an initial learning rate of η = 10−3 for up to 100 epochs. The MSE objec-
tive heavily penalizes large residuals, guiding the weights into a parameter
region that captures the dominant variance of each merger-history target.

2. Phase II – MAE Refinement: To mitigate the influence of outliers and am-
biguous training samples, we switch to the mean absolute error (MAE) loss,

LMAE =
1

N

N∑
i=1

∥∥ŷi − yi

∥∥
1

,

and reduce the learning rate to η = 5× 10−4 for an additional 50 epochs.
The MAE objective evenly weights all residuals, refining the model toward
median-optimal predictions.
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Within each phase, we monitor the loss on the held-out validation set at the end
of every epoch. If the validation loss fails to improve for 20 consecutive epochs,
training is stopped and the model reverts to the parameter state that achieved the
lowest validation loss. Early stopping prevents overfitting, especially important
during the MAE phase when the loss landscape is less steep—and caps unneces-
sary computation once meaningful gains cease.

To reduce sensitivity to the random initialization of weights and to improve
predictive stability, we train an ensemble of seven MLP replicas, each initialized
with a distinct random seed. Each replica undergoes the full two-phase training
with independent early stopping. At inference time, predictions from the ensem-
ble are aggregated via the element-wise median, which suppresses outlier model
responses while preserving the central tendency of the learned mapping.

After ensemble aggregation, standardized predictions are inverse-transformed
to physical units using the saved target scaler. We then compute the mean absolute
error (MAE) of each of the merger-history outputs on the held-out test set. These
MAE values serve as our baseline metrics, directly comparable to the cINN’s MAP-
based point estimates and informing the relative advantage of the probabilistic
model.

10.3 sensitivity analysis

Before training our conditional invertible neural network (cINN), we aim to iden-
tify and retain only the most informative subset of observables. Reducing the input
dimensionality yields several scientific and practical benefits: it reduces the risk of
overfitting, enhances interpretability of the learned mappings, and decreases com-
putational cost.

To identify which observables are most informative for predicting the merger
parameters, we quantify feature importance by permutation sensitivity on the held-
out test set. The idea is to measure the degradation in predictive accuracy when
the association between a single observable and the targets is destroyed, while
preserving the marginal distribution of that observable and all correlations among
the remaining features. For this reason we perform:

1. Train the MLP on the full set of standardized observables (as explained in
section 9.1) to predict the six standardized merger-history targets.

2. Evaluate its baseline performance by computing the mean absolute error
(MAE) on the held-out test set.

3. For each input feature, randomly permute its values across all test samples,
thereby breaking any learned association, while leaving other features un-
changed.

4. Recompute the MAE for each target on the permuted test set and record the
increase in error relative to the baseline.

5. Rank the observables by the magnitude of their induced MAE increase, se-
lecting the top k features that contribute most critically to accurate inference.
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Let T denote the fixed test index set and ŷ(x) the ensemble-median MLP predic-
tion in standardized target space (Section 10.2). We first compute a baseline error
in physical units,

b ∈ Rq, bk =
1

|T|

∑
i∈T

∣∣∣yphys
ik − ŷ

phys
ik

∣∣∣ ,
where the inverse of the target standardization is applied to both predictions
and ground truth. Using physical units makes each component bk directly in-
terpretable for its target (e.g., Gyr for Collision Time, kpc for Pericenter Distance,
etc.).

For each observable (feature) j ∈ {1, . . . ,p} we form a perturbed test design X̃(j)

by applying an independent random permutation to the j-th column across test
rows,

X̃(j)
ik =

Xπj(i) j, k = j,

Xik, k ̸= j,
i ∈ T,

This operation preserves the distribution of feature j in the test set but breaks its
joint dependence on the targets given the other features; all other columns remain
unchanged. We then evaluate the ensemble-median prediction on X̃(j), invert to
physical units, and recompute the MAE vector,

m
(j)
k =

1

|T|

∑
i∈T

∣∣∣yphys
ik − ŷ

phys
ik

(
X̃(j)
i

)∣∣∣ .
The sensitivity matrix S ∈ Rp×q is defined component-wise as the MAE increase,

Sjk = m
(j)
k − bk = ∆MAEj,k (11)

Large positive Sjk indicates that scrambling observable j substantially harms
accuracy for target k, hence j is important for predicting k. Values near zero suggest
little marginal contribution. Small negative entries can occur due to finite-sample
noise or variance reduction from the permutation and are not truncated in our
analysis.

Because each target is evaluated in its own physical units, raw sensitivity incre-
ments Sjk are not comparable across columns. We therefore convert each target
column k into ranks by ordering observables in descending ∆MAE:

rjk = 1+
∣∣{ j ′ : Sj ′k > Sjk }

∣∣, j = 1, . . . ,p, k = 1, . . . ,q.

This yields a rank matrix R ∈ Rp×q, where smaller values indicate greater impor-
tance for the corresponding target.

To summarize feature utility across all targets, we compute the mean rank for
each observable,

r̄j =
1

q

q∑
k=1

rjk, j = 1, . . . ,p,

The result can be seen in Figure 15. Using this we can select the conditioning set
for the cINN model by taking the M observables with the smallest r̄j.
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The top 8 selected inputs are: Gas Mass, Stellar Metallicity, M500c, Central En-
tropy, BCG Total Mass, Cosmic Time, and COM Offset.

To visualize how much each selected observable affect each inferred target, we ex-
tract the corresponding rows from the permutation–based sensitivity matrix (equa-
tion 11) for the eight selected observables; e.g., M500c, gas mass, stellar metallicity,
BCG mass, central BH mass, central entropy, cosmic time, and COM offset). In
Figure 16, for each target column d we plot a heatmap of log10(|∆MAEj,d|), where
∆MAEj,d is the increase in test MAE when observable j is independently shuffled
(higher log(|∆MAE|) shows stronger importance). Since ∆MAE is measured per
target separately, it cannot be compared across different targets, and hence, each
target has its own color bar.
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Figure 15: Mean rank of each observable, computed from the permutation sensitivity ma-
trix by ranking features within each target and averaging across targets. The top
eight features (smallest mean ranks) are selected as the conditioning set for the
cINN.

Figure 16: Permutation sensitivity for a selected set of observables (rows) across all targets
(columns). Color encodes log10(|∆MAE|) on the test split; larger values indi-
cate a larger degradation in accuracy when that observable is destroyed, hence
higher importance for that target.
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C O N D I T I O N A L I N V E RT I B L E N E U R A L N E T W O R K

11.1 cinn model architecture

The Conditional Invertible Neural Network (cINN) used in this thesis, is imple-
mented using FrEIA (Framework for Easily Invertible Architectures) library [4, 5].
The library provides modular components for construcitng invertible architecture
that enables a bijective mapping between target variable (x) and a latent space
(embedding) z, conditioned on c. The main idea is to first learn a forward transfor-
mation that f(x, c) = z where z lies in a latent space where standard probabilistic
modeling (e.g., Gaussian likelihoods) can be applied.

This transformation is implemented via a sequence of normalizing flow blocks,
which are invertible by design and have a tractable jacobian determinants. Learn-
ing such a mapping will allow us to get the conditional probability p(x | c). The in-
verse transformation, f−1(z, c) = x, generates target samples x that are conditioned
on c. By doing this multiple times, the complete conditional posterior p(x | c) is
produced. rather than producing only a single point estimate. As a result, the
model captures the uncertainty and possible multi-modality of the solution space.

To formalize this, let X ∈ RDx be the target variable and C the conditioning
variable. The cINN defines an invertible, differentiable transformation:

Z = f(X |C), X = f−1(Z |C), (12)

where Z is the latent variable in a space where a simple base density pZ(z) (e.g., a
standard Gaussian) is assumed. For each fixed c, the mapping x 7→ z is bijective,
and its local volume change is described by the Jacobian matrix

Jf(x | c) =
∂f(x | c)

∂x
∈ RD×D. (13)

The relationship between the densities of X and Z follows from the multivariate
change-of-variables theorem. For any measurable set A ⊂ RD,∫

A

pX|C(x | c)dx =

∫
f(A|c)

pZ(z)dz. (14)

An infinitesimal volume element transforms as

dz = |det Jf(x | c)| dx, (15)

which yields the pointwise density transformation:

pX|C(x | c) = pZ

(
f(x | c)

)
|det Jf(x | c)| . (16)

Equation (16) expresses the fact that probability mass is preserved under the map-
ping, up to a scaling given by the local volume change.

If we assume the base density to be standard Gaussian,

pZ(z) = (2π)−D/2 exp
(
−
1

2
∥z∥2

)
, (17)
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then the conditional log-likelihood becomes

logpX|C(x | c) = logpZ

(
f(x | c)

)
+ log |det Jf(x | c)| (18)

= −
1

2
∥z∥2 − D

2
log(2π) + log |det Jf(x | c)| . (19)

Maximizing the likelihood is therefore equivalent to minimizing the negative log-
likelihood (up to an additive constant):

L(x, c) =
1

2
∥z∥2 − log |det Jf(x | c)| , z = f(x | c). (20)

The first term encourages the latent variables to follow the chosen prior distri-
bution, while the second term accounts for the volume change induced by the
transformation f.

• Input and Condition Nodes: The cINN takes a target vector x as input
and models its transformation through a series of invertible coupling blocks,
while the condition vector c is injected at each block to condition the trans-
formation.

• Subnet Construction: Each coupling block is parameterized by a small fully
connected feedforward neural network, known as subnet, that computes the
parameters of the transformation (e.g., shift and scale in affine couplings, or
spline parameters in spline-based couplings).

• Coupling Blocks: CINNs are composed of a sequence of coupling blocks,
each of which applies an invertible transformation to part of the input while
leaving the rest unchanged. By alternating which part of the input is trans-
formed across blocks, the network achieves full transformation of the input
space. The number of blocks controls the expressivity and depth of the trans-
formation.

• Coupling Block Types: Two main types of coupling transformations are com-
monly used: affine and rational quadratic spline (RQS). Affine couplings per-
form linear transformations and are easy to compute, while RQS couplings al-
low for more flexible and non-linear transformations, improving the model’s
expressiveness while preserving exact invertibility and tractable Jacobians.

• Permutation Layers: Permutation layers are inserted between the coupling
blocks to rearrange the input dimensions. This prevents certain features from
always being transformed or left unchanged, by ensuring that all coordinates
are repeatedly updated.

The cINN model used in this thesis is instantiated with the following architec-
tural and training choices, chosen after empirical experimentation:

• Input and Condition Nodes: In this work, the input x represents the scaled
unobservable physical properties of galaxy clusters (as discussed in section
9.2), while the condition c can corresponds to either; 1- The observable prop-
erties of galaxy clusters (discussed in section 9.2) which will be further ex-
plored in this part (as in part iv) or 2- the image representations extracted
from a SimCLR-trained encoder (as will be discussed in part v, vi, and vii).
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Each block in the cINN receives this conditional input, allowing the model
to learn how the distribution of physical parameters varies with changes in
the representation space.

• Subnet: Each transformation function within the coupling blocks is param-
eterized by a fully connected feedforward MLP with 3 hidden layers, each
containing 256 hidden units and ReLU activations. This architecture was se-
lected to provide enough power to model complex transformations, while
maintaining computational efficiency. Their depth and width were chosen
through empirical tuning to balance model capacity and overfitting risk.

• Coupling Blocks: The model architecture comprises 8 sequential coupling
blocks. Each block splits the input into two vectors and applies an invert-
ible transformation to one half, while leaving the other half unchanged. This
pattern alternates across layers to ensure that all dimensions are eventually
transformed. The choice of eight blocks was selected based on practical ex-
perimentation to achieve a high capacity model without excessive depth.

• Coupling Block Types: We use rational quadratic spline (RQS) coupling
transformations as introduced by Durkan et al. [44]. RQS transformations are
highly expressive and support smooth, non-linear mappings, making them
ideal for learning complex distributions. Unlike affine couplings, which are
limited to linear transformations, RQS blocks capture variations in the condi-
tional data distribution while retaining tractable likelihood computation and
exact invertibility.

• Permutation Layers: Permutation operations are used between coupling blocks
to improve mixing of variables across the network. In our configuration, fixed
random permutations (i.e., hard permutations) are used, meaning a single
randomly drawn permutation matrix is generated at initialization and ap-
plied consistently throughout training and inference. This ensures that all in-
put dimensions participate in the transformation across the network’s depth.

Within the FrEIA frame work, there are two primary input structures: an InputNode,
which receives the target vector x ∈ RDx , and a ConditionNode, which encodes the
associated conditioning variable c ∈ RDc (observable properties or learned repre-
sentation) [4]. These nodes are not just passive data containers and actually define
the structure of the computation graph. The input variable is linked sequentially
to a series of invertible transformations (e.g., the coupling blocks), while the con-
ditioning variable is passed into every coupling block, ensuring that the learned
mapping is explicitly conditioned on c.

The model stores the input dimensions (Dc and Dx), which will later be re-
quired for coupling blocks later in the architecture. Invertible architectures based
on coupling transformations require input variables to lie within bounded and nu-
merically stable domains. Since our target properties are already scaled (in section
10.1), this step is not necessary here and is skipped.

The model is made of a chain of multiple coupling blocks, where each of them
is responsible for implementing an invertible transformation on the input vector.
The model’s objective is to learn an invertible function fθ, parameterized by neural
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network weights θ, that maps the input variable to a latent representation (embed-
ding) z = fθ(x | c). Once fθ is learned, the inverse mapping x = f−1

θ (c, z) can be
used to generate plausible samples of x conditioned on c.

Each coupling block transforms split the target vector into two subsets: xa, which
remains unchanged in that block and xb which is transformed. The transformation
of xb is parametrized by a small feedforward neural network, or subnet, which
takes the unchanged portion xa concatenated with the condition vector c. The sub-
net then outputs the transformation parameters, such as scaling factors and shifts
in affine transitions, or bin width, heights and derivatives in RQS coupling that are
applied to xb. It is important to note that the transformations are constructed such
that their inverse and Jacobian determinant can be computed analytically. This
property allows the model to computes the loss as expressed in the equation 20.

Each subnet is constructed as a fully connected multi-layer perceptron (MLP)
composed of L layers, where L ⩾ 1, with activation functions in between. For this
thesis, the subnets are composed of three linear layers followed by non-linear ReLU
activations. Its architecture can be summarized as follows:

Linear(Din,Dhidden) → ReLU → Linear(Dhidden,Dhidden) → ReLU → Linear(Dhidden,Dout)

where Din = dim(xa) + dim(c) is the total number of input features, Dhidden is
the width of the hidden layers, and Dout is the number of transformation parame-
ters required for xb. To improve stability in the early stages of training, the weights
of the final layer are initialized to zero to ensure that the initial transformation is
close to the identity mapping.

In this part, the conditional input c consists of a 8-dimensional representation
space because fo the selected 8 observable inputs in section 9.1, while the input
feature vector x ∈ R6 is split evenly by the coupling block such that xa, xb ∈ R3.
As a result, the subnet receives Din = 3+ 8 = 11 input features.

The output dimensionality Dout depends on the type of transformation used in
the coupling block. In the case of rational quadratic spline (RQS) transformations,
each transformed input dimension requires K bin widths, K bin heights, and K−

1 derivatives to define the piecewise monotonic spline, and as a result Dout =

dim(xb) · (3K− 1). For our configuration with K = 10 spline bins and dim(xb) = 3,
we obtain Dout = 3 · (3 · 10− 1) = 87. The hidden layer width of the subnet is fixed
to Dhidden = 256 across all subnetworks.

Thus, in our implementation, each subnet used in a coupling block consists of
the following sequence of layers:

Linear(11, 256) → ReLU → Linear(256, 256) → ReLU → Linear(256, 87)

As mentioned, the two coupling blocks that have been implemented and experi-
mented with are:

affine coupling . In affine coupling layers, the subnet predicts element wise
shift and scale parameters for the subset xb, conditioned on xa and the external
condition c. The transformation is then given by:

x ′
b = xb ⊙ exp (s(xa, c)) + t(xa, c), x ′

a = xa, (21)
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where s(·) and t(·) are the scale and shift functions, respectively, and ⊙ denotes
elementwise multiplication. This coupling is computationally efficient and has a
closed-form inverse:

xb =
(
x ′
b − t(xa, c)

)
⊙ exp (−s(xa, c)) .

Moreover, the Jacobian of the transformation is triangular, and its log-determinant
simplifies to the sum of the predicted scale outputs:

log
∣∣∣∣det

∂x ′

∂x

∣∣∣∣ = ∑
j

sj(xa, c).

spline coupling . While affine coupling suffices for many applications, it is
limited to transformations that are globally linear per dimension. To increase the
expressiveness of the model, we employ rational quadratic spline coupling [44], a
more flexible alternative that replaces the affine transformation with a monotonic,
piecewise-defined spline function [44].

Same as the affine coupling block, the RQS coupling blocks also operate on
the inputs by partitioning the input into xa, remains unchanged and is used to
condition the transformation of the second subset xb. The conditional input, will
be concatenated with xa, and preparing it to be passed to the subnet that will
generate the spline parameters [44].

The core transformation is based on a learnable piecewise rational quadratic
spline, constructed from a set of bins that will partition the input. Each trans-
formed dimension is mapped through its own spline, where the spline’s shape is
parametrized by a set of width, height and derivatives. For K bins, each spline seg-
ment requires 3K− 1 parameters per transformed channel. These parameters are
predicted subnet as discussed, which takes as input the conditioning features (i.e.,
the xa and the external conditions c) and outputs the transformation parameters
for each element of xb. The unnormalized width, heights and derivatives are saved
as a flattened tensor named θ [44].

For preserving the numerical stability and guarantee invertibility, each bin width
and height is required to be greater or equal to 10−3, therefor preventing vanishing
segments and maintaining a monotonic mapping. Similarly, the derivatives at bin
edges are constrained to remain above a minimum value of 10−3, ensuring that
the spline remains smooth and invertible throughout. To ensure each bin width
and height is strictly positive and nonzero, the unnormalized values are passed
through a softmax and scaled [44]:

wi = ϵw + (1− ϵw ·K) · softmax(θw)i, hi = ϵh + (1− ϵh ·K) · softmax(θh)i

where K is the number of bins, and ϵw, ϵh are the minimum bin width and height
thresholds, respectively. This normalization ensures that the sum of all widths (or
heights) spans the entire bounded interval and avoids degenerate cases.

The cumulative widths and heights are then computed to obtain the bin edges.
The cumulative values are padded and scaled to fit within the bounds [44]:

cumwidths ∈ [left, right], cumheights ∈ [bottom, top]
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And in the end, same as the height and width, the derivatives at each bin edge are
obtained by applying the softplus function to the unnormalized derivatives, with a
minimum derivative added to maintain monotonicity [44].

For each input value, the algorithm determines which bin it falls into. Based on
the selected bin index, local parameters for each input—such as the bin width(∆x),
height(h), slope (δ), and edge derivatives—are extracted for the subsequent trans-
formation. Depending on the direction of the flow forward or inverse, two sets of
equations are used [44]:

Forward transformation, we have the input x and we want the y = f(x), and we
computes the output as a smooth nonlinear mapping from input values :

θ =
x− xleft

∆x
, θ(1− θ) = θ · (1− θ) (22)

f(x) = yleft +
h · (δθ2 + dleft · θ(1− θ))

δ+ (dleft + dright − 2δ) · θ(1− θ)
(23)

For the inverse transformation, we have the y = f(x), and we want to get the
x = f−1(y). For that we use the equation 23 and solves a quadratic equation to
recover the input given the output. This is achieved by finding the root of a spline
inversion equation of the form [44]:

aθ2 + bθ+ c = 0 (24)

a = (y− yleft)(dleft + dright − 2δ) + h(δ− dleft)

b = h · dleft − (y− yleft)(dleft + dright − 2δ)

c = −δ(y− yleft)

(25)

The root θ is then computed, and from here, the solution x, can be calculated
simply as [44]:

x = xleft + θ∆x, θ =
2c

−b−
√
b2 − 4ac

(26)

For both forward and inverse transformations, the log-determinant of the Jaco-
bian is computed analytically. The Jacobian is important in calculating the loss as
in equation 20. The derivative of the spline is computed using the chain rule and
and for the forward direction we have [44]:

∂f(x)

∂x
=

drightθ
2 + 2δ · θ(1− θ) + dleft(1− θ)2

δ+ (dleft + dright − 2δ) · θ(1− θ)
(27)

For mixing the information and avoiding the risk of the model learning axis-
aligned or degenerate transformations, a permutation operation is applied be-
tween the succsessive coupling layers. We use a fixed random permutation ma-
trix, by drawing a uniform permutation over the input dimensions. This reorders
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the input features before they are passed into the next coupling block, ensuring
that different subsets of the input vector are designated as the conditioning and
transformed parts in each layer. By doing so, it prevents any particular dimension
from consistently remaining in the same role (e.g., always being conditioned on
but never transformed). By alternating the transformed channels in each layer, we
ensures that all dimensions participate in the learned mapping over the course of
multiple coupling blocks.

To construct the invertible neural network architecture, the model defines a com-
putational graph using the FrEIA [4]. The architecture begins with the declara-
tion of an input node representing the observable variables—in this case, a six-
dimensional vector corresponding to the unobservable astrophysical parameters
that the model is designed to infer. Alongside this input node, a condition node
is initialized to carry the conditional information, which remains fixed across all
coupling layers and informs the transformation at each stage.

The core of the model consists of a sequence of eight invertible coupling blocks,
each responsible for applying a bijective transformation to a subset of the input di-
mensions. These blocks are constructed using RQS coupling layers, which model
complex, flexible nonlinear transformations while maintaining exact invertibility
and efficient Jacobian computation. For each block, a subnet is used to predict the
spline parameters—bin widths, heights, and derivatives—based on the concatena-
tion of one half of the input features and the conditioning embedding. Each RQS
block operates on a split of the input, leaving one half unchanged while transform-
ing the other half based on the learned spline map. Between successive blocks, the
input channels are permuted using a fixed random permutation (a hard permuta-
tion), ensuring that each dimension is eventually transformed and contributing to
global expressivity. After the final block, an output node marks the termination of
the transformation pipeline. The entire architecture is assembled into a GraphINN

object, which supports forward and inverse evaluation and provides access to all
trainable parameters for optimization during training.

Summary

In summary, the cINN implemented in this work is designed to learn an invertible
mapping between a set of unobservable physical properties x ∈ R6 and a latent
space variable z that is encouraged to follow a standard normal distribution, con-
ditioned on an 8 dimensional observable properties of galaxy clusters (c ∈ R8) in
this part, or a 512-dimensional embedding c ∈ R512 derived from X-ray and Radio
in the upcoming parts of v, vi, and vii. The model achieves this through a compo-
sition of 8 invertible transformations, each realized via RQS coupling blocks.

At each coupling block, the input vector x is split into two subsets of variables,
denoted by (xa, xb), where xa ∈ R3 and xb ∈ R3. The subset xa is passed unal-
tered through the coupling layer but is used, in concatenated with the conditional
vectorc, to compute a set of transformation parameters θ that are applied to xb.
Specifically, the concatenated vector (xa, c) is passed into a small neural network
referred to as the subnet.

The subnet is a multilayer perceptron composed of three fully connected layers.
The first layer takes the input of size dxa + dc, maps it to a hidden embedding,
applies a nonlinearity (ReLU), and passes it through two more linear layers. The
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output of the subnet is a vector of dimension 3K− 1 (where K = 10 is the number
of spline bins); 3 parameters are learned per bin (widths, heights, and derivatives),
minus one due to the last bin for derivatives. The resulting parameter vector is
reshaped to match the shape of xb so that a separate spline is applied per trans-
formed dimension.

Each xb component is then transformed using RQS, a flexible and invertible
transformation defined over a bounded interval. The spline transformation maps
each input through a piecewise function characterized by learned bin widths,
heights, and derivatives. These parameters are regularized to enforce invertibil-
ity: bin widths and heights are normalized using a softmax and constrained to be
no smaller than a minimal threshold (1e-3), and the derivatives are bounded from
below using a softplus transformation.

For the inputs, the transformation computes a spline coordinate θ = x−x_left
∆x ,

identifies the appropriate bin, and applies the forward or inverse transformation
depending on the training mode. The Jacobian determinant of this transformation
is computed (as in equation 27) analytically and accumulated for use in the training
loss.

After each coupling transformation, a fixed permutation of the channel dimen-
sions is applied to the transformed vector. This shuffling ensures that all variables
are eventually transformed across different coupling layers, even though each
block modifies only one half of the input. By altering which subset of variables
plays the role of xa and xb at each layer, and by reordering them, the model avoids
learning degenerate axis-aligned transformations and encourages global informa-
tion mixing.

The eight coupling blocks are composed sequentially, forming the complete bi-
jective mapping f : x 7→ z conditioned on c. Across the sequence of blocks, all six
components of x undergo nonlinear transformations, resulting in a final output z
in R6.

After the final coupling block, an output node is appended to signify the end
of the flow graph. This node collects the transformed data, which is interpreted as
latent variables z. Finally, the condition node is appended to the graph to register
its use, ensuring the graph remains complete and properly structured. The graph
is then compiled into a full invertible model using FrEIA’s GraphINN class, which
manages data flow between nodes and automatically tracks invertible mappings.
The result is a fully invertible embedding z = f(x; c) [4].

And finally, the model is trained using maximum likelihood estimation under
the assumption that the transformed variables follow a standard Gaussian distribu-
tion. The loss is computed as the negative log-likelihood from equation 20, where
z = f(x; c) is the output of the flow and det Jf is the Jacobian determinant accu-
mulated across all coupling blocks. The conditional structure allows the model
to learn complex, multi-modal posterior distributions over x, given the observed
embedding c.

11.2 training

We train the cINN by maximum likelihood on paired targets and conditions (x, c),
using the negative conditional log–likelihood (NLL) as the objective. Given a mini–batch
{(xi, ci)}Bi=1 from the training split, the loss minimized at each step is:
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L̂NLL(θ) = −
1

B

B∑
i=1

logpθ(xi | ci) (28)

=
1

2B

B∑
i=1

∥zi∥2 −
1

B

B∑
i=1

log |det Jfθ(xi | ci)| . (29)

where zi = fθ(xi | ci) and Jfθ is the Jacobian of the forward flow (section 11.1).
Equation 28 is the stochastic mini–batch estimate of the negative log–likelihood
derived in Equation 20.

As described in section 10.1, observables and targets are standardized and split
80/10/10 into train/validation/test. PyTorch DataLoader yields batches in the or-
der (x, c) (targets first, conditions second), and we use a batch size of 256. At con-
struction, the trainer instantiates the cINN with the training tensors (targets and
conditions) and the architectural choices (number of blocks, subnet widths, spline
settings) are those described in the section 11.1.

During training, we add small isotropic Gaussian noise to both targets and con-
ditions in standardized space,

x → x + σ εx, c → c + σ εc, εx, εc ∼ N(0, I), σ = 0.01.

This acts as a mild data augmentation and regularizer for flows, discouraging
brittle solutions and improving numerical stability of the Jacobian terms. This is
specially important for time parameters (Cosmic Time in observables) because of
their discrete nature, since they are measured in simulations as snapshots provided
by the TNG-Cluster simulation as explained in section 9.1. Gradients are clipped
to norm 5.0 each step to prevent rare exploding updates.

We use AdamW to minimize equation 28 with [79]:

(learning rate, β1, β2, ϵ, weight decay) = (5×10−4, 0.9, 0.999, 10−6, 10−5)

A reduce_on_plateau learning–rate scheduler is also applied [121]. This scheduler,
reduces the learning rate by a factor of 0.8 if the validation loss does not improve
for 20 epochs (threshold 10−4).

Training runs for 2000 epochs. Each epoch iterates over mini-batches (with Gaus-
sian noise), computes equation 28, backpropagates, takes an AdamW step, and
then evaluates Eq. 28 on the validation split in evaluation mode (no Gaussian
noise). We save checkpoints at initialization, every 20 epochs, and at the final epoch.
Learning–rate updates for ReduceLROnPlateau are applied after validation. From
here on, for postprocessing and results (chapter 12) use the last checkpoint.

11.3 inference and postprocessing

After training, the cINN provides an exact, normalized model for the conditional
density p(x | c) via the invertible map

z = f(x | c), x = f−1(z | c), z ∼ N(0, I).

Postprocessing proceeds in the following order;
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(1) Fix the conditioning inputs. Given a batch of conditions C ∈ RN×Dc (observ-
ables or learned embeddings), we will characterize p(x | ci) for each row ci.

(2) Draw posterior samples by inversion. For each ci, draw nsam i.i.d. latent sam-
ples z(s) ∼ N(0, I) and push them through the inverse flow:

x(s)i = f−1
(
z(s) | ci

)
, s = 1, . . . ,nsam.

(3) Summarize each posterior with a MAP point. For a fixed condition c let
{x

(s)
d }

nsam
s=1 be the Monte Carlo samples of the d-th target coordinate drawn from

p(x | c) and converted to physical units. We estimate the posterior marginal den-
sity of that parameter with a one–dimensional Gaussian kernel density estimator
(KDE):

p̂(xd | c) =
1

nsam h

nsam∑
s=1

1√
2π

exp

(
−
(xd − x

(s)
d )2

2h2

)
,

where h > 0 is the bandwidth (smoothing scale). The marginal maximum–a–posteriori
(MAP) estimate for coordinate d is then:

xMAP
d (c) ≈ arg max

xd

p̂(xd | c),

computed by evaluating p̂ on a uniform grid over the sampled range and taking
the maximizer.

(4) Build empirical priors. For visualization and sanity checks, we also estimate
empirical priors per merger parameter using the same 1D Gaussian KDE applied
to the test targets (unconditional on c). Let Dtest

d = {xi,d}
Nte

i=1 be the test values of
coordinate d in physical units. Then

p̂emp(xd) =
1

Nh

N∑
i=1

1√
2π

exp
(
−
(xd − xi,d)

2

2h2

)
.

For plotting, we normalize each p̂emp to unit peak. These empirical priors are not
used in training, they simply summarize what stays in the test dataset and serve
as a baseline against which to compare the learned posteriors p(x | c).

Implementation notes. We use Gaussian kernels with bandwidths chosen empiri-
cally (e.g., h = 0.3 for MAP KDEs and h = 0.5 for empirical priors) and evaluate on
a dense grid (512 points) over the sampled range. All sampling and KDEs are car-
ried out after converting to physical units, so MAPs and any credible summaries
are directly interpretable (e.g., Gyr, kpc). Since we evaluate the MAP on a uniform
grid of G = 512, this can impose a finite resolution ∆ ≈ (xmax − xmin)/(G− 1) in
each coordinate, i.e., very sharp modes are snapped to the nearest grid node. How-
ever, With G = 512, the resulting quantization error is far smaller than the gaussian
error added during training, so its impact on reported MAPs is negligible.

This workflow yields, for each c, a set of posterior samples x(s) capturing uncer-
tainty and possible multi-modality, along with a single, comparable point estimate
x̂MAP for downstream metrics and plots.

(5) Empirical prior modes. In addition to visualizing the empirical priors, we can
also extract their most probable values by taking the argmax of the KDE estimate
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p̂emp(xd) along a uniform evaluation grid. These modes provide simple summary
statistics of the unconditioned dataset and serve as interpretable benchmarks. Ta-
ble 7 lists the empirical prior modes obtained for each merger parameter, together
with their units. This can further be used for evaluation on the performance of the
cINN.

Table 7: Empirical prior modes estimated via Gaussian KDE from the full dataset, for last
and next mergers.

Parameter (units) Last merger Next merger

Collision Time (Gyr) 8.7019 12.4484

Collision Velocity (log(km/s)) 3.2688 3.2647

Main Cluster M500c (log(M⊙)) 14.4541 14.4956

Subcluster Mass (log(M⊙)) 13.3764 13.4232

Merger Mass Ratio 0.2149 0.2034

Pericenter Distance (log(kpc)) 2.3968 2.4977





12
R E S U LT S A N D D I S C U S S I O N S : S C A L A R C O N D I T I O N I N G

12.1 posterior distribution

We visualize conditional posteriors p(x | c) for a subset of test clusters using
the trained cINN. From the saved test indices we randomly select nrows = 15

galaxy clusters. For each selected cluster, or in other words, condition ci, we draw
nsam = 1000 posterior samples {x(s)i }

nsam
s=1 via the inverse flow (section 11.3), convert

all samples to physical units, and display one target (merger parameter) per col-
umn. Each row corresponds to one randomly chosen cluster out of the test sample,
annotated on the left with its HaloID and redshift z. Each column shows a differ-
ent merger parameter (the unobservable of section 9.2). Within each panel four
elements are overlaid (constructed as in section 11.3):

• a gray prior distribution curve for the merger parameter (derived as discussed
in section 11.3). This curve shows the distribution of values across the test
set of the galaxy clusters.

• a blue curve showing the posterior distribution of the merger parameter for
the randomly chosen test galaxy cluster. The posterior distribution, is the
immediate product of our cINN training.

• a gold/yellow vertical line, representing the MAP (maximum–a–posterior)
estimate from the learned posterior distribution.

• a red vertical line at the ground-truth value, which is the direct outcome of
the TNG-Cluster simulation as discussed in section 9.2.

It is important to note that both prior and posterior KDEs are peak-normalized,
so absolute curve heights are not comparable across panels; inference relies on the
relative location and sharpness of the blue posterior versus the gray prior and the
red truth. Moreover, nsam controls Monte Carlo smoothness of the posterior KDE;
we use nsam = 1000 in all panels.

For reading Figure 17, when the blue posteriors are (i) visibly narrower than
the gray priors and (ii) vary across rows, indicate that the conditioning variables c
(scalar observables) provide cluster-specific information about the merger param-
eters. Narrow posteriors point to precise inference, while having the MAP laying
close to the ground-truth shows its accuracy. The performance can be seen to be
the strongest for Collision Time and also pronounced for the Main Cluster M500c;
it is weaker—but still present—for Collision Velocity. Collision Time have the most
precise posteriors; meaning that they are strongly contracted with respect to the
prior. In contrast, Merger Mass Ratio, Subcluster Mass, and Pericenter Distance, do
not have accurate MAP estimates and often retain posteriors that are broader and
are similar across different clusters reflecting intrinsic degeneracies.

It also can be seen that the gold MAP lines lie close to the red ground truths
(accurate inference) when contraction is strong as in Collision Time, Main Cluster
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Figure 17: Conditional posterior distribution for 15 randomly selected test galaxy clusters
(rows) out of 203, across all target merger parameters (columns). Gray: prior
distribution over the test split (KDE). Blue: predicted posterior KDE for each
galaxy cluster predicted by the cINN. Gold: MAP estimate. Red: ground truth
from TNG-Cluster.
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M500c, and Collision Velocity. The largest MAP–truth discrepancies occur where
posteriors are broad (Merger Mass Ratio, Subcluster Mass, Pericenter Distance),
which is the desirable behavior: the model expresses uncertainty rather than over-
confidently committing to an incorrect value. Figure 17 illustrates 15 cases; the next
sections quantify these patterns over the full test set.

12.2 prediction performance of the cinn

Figure 18 summarizes, for each merger parameter xd, how the full posterior p(xd |

c) compares to the simulation ground truth across the test set. We first partition
the ground-truth axis into B = 15 equal-width bins. For every test galaxy cluster
in a given truth bin we draw nsam = 500 posterior samples with the inverse flow
(Section 11.3) and histogram those samples into the same binning along the vertical
axis. The result is a 15×15 count matrix shown as a heatmap in value space, with
the white diagonal marking y = x showing the ideal case. Overlaid black curves
report the posterior median (solid) and central 10–90% quantiles (dashed) as func-
tions of the truth. In the ideal case, probability mass concentrates in a narrow ridge
along the diagonal with tight quantile bands.

Figure 19 complements the distributional view with point estimates. The top row
scatters the MAP against the ground truth for each target (pink line: y = x), to-
gether with running medians (solid black line) and 10–90% envelopes in truth
bins. The bottom row replaces the vertical axis with the relative error ∆ = (MAP−

truth)/truth to make scale differences explicit, again showing the medians in solid
black line and two dashed lines containing 80% of the data. Concentration near
the identity in the top row and near ∆ = 0 in the bottom row indicates accurate
predictions; the envelope width visualizes dispersion.

Systematic vertical offsets of the median reflect bias, formally b(x) = E[x̂ | x] − x,
so a median curve above y = x indicates positive bias (overestimation) and below
indicates negative bias (underestimation). However, departures from y = x encode
distinct effects. A bending of the distribution’s center (or MAPs in our case) toward
the sample’s mode is shrinkage/regression-to-the-mean: when c is only partially
informative, extreme truths are pulled toward the global mode. This can be seen
in when the median line of posterior distributions or the MAP estimate, flips near
the global mode of the target distribution (table 7). Widening 10–90% bands with
|truth| indicate heteroscedasticity—uncertainty growing in certain regimes (e.g., very
small or large values). In the relative-error panels, percentage errors can inflate
where the denominator approaches zero (as in the case of Merger Mass Ratio);
those regions should be interpreted with care.

Finally, both figures depend mildly on the analysis hyperparameters (B, nsam):
increasing the number of truth bins B gives finer resolution along the axes but
spreads a fixed sample budget over more bins—reducing counts per bin and thus
increasing variance (noise ∝ 1/

√
count)—whereas increasing the posterior draws

per object nsam boosts those counts and correspondingly suppresses Monte Carlo
fluctuations in the histograms/KDEs, stabilizing the MAP/quantile curves.

Taken together, the stacked posterior heatmaps (Figure 18) and the MAP–vs–truth
/ relative–error views (Figure 19) provide a consistent population-level assessment
of calibration (median vs. y = x) and dispersion (quantile widths), as well as point-
estimate accuracy. We summarize the per-target behavior below;
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collision time . Among all targets, Collision Time exhibits the best calibra-
tion: the posterior median closely tracks the identity line with comparatively tight
10–90% bands. The MAP–vs–truth relation mirrors this, but the relative errors clus-
ter at ∼ 20–30% with a mild positive bias (overestimation). Part of this inflation re-
flects the discrete snapshot sampling of time, for which percentage errors are less
forgiving than absolute errors; shrinkage toward the dominant snapshot spacings
also contributes.

collision velocity. Calibration is good in the high-velocity regime (e.g.,
log(v) ⩾ 3.2 km/s), with narrow posterior bands along y = x. At lower veloci-
ties the posterior widens (heteroscedasticity) but remains centered. Notably, the
MAP bias changes sign around the global mode v ≈ 103.2 km/s: below the mode
we see mild overestimation, above it mild underestimation—canonical shrinkage
toward the modal scale. Errors are modest overall, typically < 10% (often < 5% at
high v).

main cluster M500c . For logM500c ⩾ 14.4 the posterior median and quan-
tiles lie close to y = x. Below this scale the median bends upward and the bands
widen, indicating weaker conditioning information and shrinkage toward the global
mode at around logM500c ≈ 14.5M⊙. Despite this, MAP errors are small: 5% at
low masses and approaching 0 at the high-mass end.

subcluster mass . Posteriors deviate from y = x with increasing spread to-
ward high masses, consistent with limited information and sample imbalance. The
MAP median departs from the identity with a sign flip near the mode Msub ≈
1013.5 M⊙: mild underestimation below the mode and mild overestimation above it,
with amplitudes typically within ±5%—again, shrinkage toward the modal scale.

merger mass ratio. This is the most challenging parameter. Neither posteri-
ors nor MAPs align with y = x; errors can be large (up to several hundred percent)
at small ratios. This reflects both weak conditioning signal and the sensitivity of
percentage errors when the denominator is small. The bounded nature of the ratio
(0 < µ ⩽ 1) and skewed target distribution further complicate learning.

pericenter distance . Calibration is moderate: the posterior median shows a
gentle S-shaped departure from y = x, and MAP errors switch sign near the modal
scale dperi ≈ 102.53 kpc (positive below, negative above), with typical magnitudes
∼ ±20%.

Overall, the cINN contracts uncertainty and tracks the identity where c is infor-
mative (time, velocity, high-mass M500c, and to lower extents Pericenter Distance),
and it transparently expresses ambiguity (wider posteriors and larger MAP dis-
persion) where the inverse problem is intrinsically weakly constrained (mass ratio,
subcluster mass). The observed sign flips around the target-wise modal scales are
consistent with regression-to-the-mean induced by partial information and data
imbalance.
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Figure 18: Posterior versus ground truth per target (merger parameter) on the 203 test
galaxy clusters. Each panel shows a 2D histogram of posterior samples (vertical)
binned on the bins of ground-truth (horizontal), with shared logarithmic color
scale. White line: y = x. Black solid line: posterior median per ground-truth
bin; black dashed lines: 10-90% posterior quantiles. A well-calibrated, accurate
model concentrates mass near the diagonal with narrow quantile bands. Here
we use B = 15 truth bins and draw nsam = 500 posterior samples per test object.
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Figure 19: Per-target (merger parameter) MAP accuracy (top) and relative error (bottom)
over the 203 test clusters. Top: scatter of MAP vs. truth with y = x (ideal), plus
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12.3 cross correlations

In the previous sections, we have tested the power of cINN to return the merger
parameter of galaxy clusters given a set of observables. In this section, we want
to see whether our cINN model is also able to learn the cross correlation between
the merger parameters. To inspect cross–target dependencies learned by the cINN,
we visualize all pairwise relations among the target merger parameters in a corner
plot. We draw nsam = 200 posterior samples per object, and create a scatter plot of
the posteriors (blue), MAP (gold), and the ground truth (red). In addition to this,
on the diagonal, we plot the 1D KDEs distribution of the posterior, MAPs, and
ground truths in their respective colors.

Alignment of gold and red clouds indicates accurate MAPs; a blue cloud elon-
gated along the red truth locus signals that the posterior captures the correct corre-
lation. Systematic offsets between gold and red trends indicate bias; dispersed or
multi–clumped blue structure indicates residual ambiguity or multi–modality in
p(x | c).

Under ΛCDM, cluster halos are approximately self-similar, so a few first-order
scalings organize the pairwise relations among merger parameters:

• Host mass vs. cosmic time. Clusters grow hierarchically; hence later cosmic
times correspond, on average, to larger M500c. A positive trend between Col-
lision Time and M500c is expected.

• Mass sets size and speed scales. With

R500c ∝
[
M500c

ρc(z)

]1/3
, v ∼

(
GM500c

R500c

)1/2

,

we expect global positive correlations:

M500c ↑ ⇒ rp (kpc) ↑, M500c ↑ ⇒ vcoll ↑ . (30)

Thus the (M500c, rp) and (M500c, vcoll) panels should show rising loci.

• Subcluster mass and mass ratio. By definition Msub = µM500c. In log-space,
at fixed M500c the (µ,Msub) panel is a near-linear band with positive slope;
across the population it broadens due to the scatter in the M500c.

• Pericenter vs. time. Because typical orbits sample similar fractional radii (rp ∼

ξR500c), and R500c increases as clusters grow, later cosmic times tend to be
associated with larger physical rp at the population level (again, with wide
scatter from orbital diversity).

The correlation structure visible in Fig. 20 demonstrates that the posterior sam-
ples, the MAP estimates, and the ground-truth values collectively reproduce the
qualitative trends anticipated from the scaling arguments outlined above. In partic-
ular, the posterior clouds trace the expected pairwise dependencies among merger
parameters, while the MAP points and ground truths align along the same loci,
confirming that the inferred distributions capture not only the correct one-dimensional
marginals but also the underlying cross-target correlations.
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Figure 20: Corner plot across all merger parameters of the 203 test galaxy clusters. Diag-
onal: marginal KDEs of posterior (blue), MAP distribution (gold), and ground
truth (red). Lower triangle: pooled posterior samples (200 posteriors for each
test sample)(blue), MAPs (gold), and truths (red) for each test object. The
plot exposes learned cross–target structure, MAP accuracy, and any residual
multi–modality.
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Figure 21: ∆-error scatter plot comparing the prediction error of the deterministic MLP
with the cINN maximum a posteriori (MAP) estimates. Each subplot corre-
sponds to one merger parameter. The x-axis shows the ground truth value,
while the y-axis shows ∆ε = |ŷMLP − y| − |ŷMAP − y|. Values above the pink
dashed zero line indicate improved accuracy of cINN MAP estimates compared
to the MLP. The percentage of test points with ∆ε > 0 is annotated on top of
each subplot.

12.4 mlp vs . cinn performance

To evaluate the benefit of the conditional invertible neural network (cINN) com-
pared with a deterministic multilayer perceptron (MLP), we compute and visual-
ize the ∆-error scatter plot for each physical merger parameter. For every test cluster
and each target dimension d, we define the error difference

∆εd =
∣∣ŷMLP,d − yd

∣∣− ∣∣ŷMAP,d − yd

∣∣,
where ŷMAP,d is the MAP estimate obtained from cINN posterior samples after
inverse transformation to physical units. Positive values (∆εd > 0) indicate that
the cINN MAP estimate is more accurate than the MLP prediction for that data
point; negative values indicate the opposite.

Each subplot corresponds to one target parameter: the x-axis shows the ground-
truth physical value, and the y-axis shows ∆εd. A dashed horizontal zero line
separates regions where the cINN improves over the MLP (above) from regions
where the MLP performs better (below). In addition, the percentage of test points
with ∆εd > 0 is reported at the top of each subplot as a compact, easy-to-interpret
summary statistic. As can be seen from Figure 21, across all merger properties, the
cINN MAP estimates tend to reduce error compared to the baseline MLP.

12.5 next–merger inference

We repeat the scalar–conditioned analysis of section 12.1 and 12.2, now targeting
the next merger (future event) rather than the last. The plotting protocol is un-
changed: we visualize per–object posteriors p(x | c) as a grid (constructed as in
section 11.3) and we summarize population–level calibration/accuracy with 2D
posterior–vs–truth histograms and MAP–vs–truth/relative–error panels.

posterior grids . Figure 22 shows nrows = 15 randomly selected test clusters
(rows) and one target per column, with prior (gray), posterior (blue), MAP (gold),
and truth (red). Relative to the last–merger case (Fig. 17), the shapes are qualita-
tively similar but generally broader—especially for Collision Time—reflecting the
added uncertainty inherent in forecasting forward in time. MAP markers remain
close to the truths where posteriors contract (Collision Time, velocity, main–cluster
mass), and deviate more where posteriors are wide (mass ratio, extreme pericen-
ters), as desired.
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Figure 22: Scalar–conditioned posteriors for the next merger (15/193 test clusters; con-
struction identical to Fig. 17). Compared to the last–merger case, posteriors are
broader—most visibly for Collision Time—yet MAPs remain close to the truths
where contraction is strong (for Collision Time, Collision Velocity and Main
Cluster M500c).



112 results and discussions : scalar conditioning

population–level performance . Figures 23 and 24 repeat the calibration/ac-
curacy summaries with B = 15 truth bins and nsam = 500 posterior draws per
object. Heatmaps remain aligned with the diagonal y = x, and median curves
(solid black) and 10–90% bands (dashed) retain the same qualitative trends as for
the last–merger, albeit with slightly wider bands (particularly for Collision Time
and Pericenter Distance). The MAP–vs–truth medians largely follow y = x for Col-
lision Time, velocity, and main–cluster mass; relative–error panels show modest,
interpretable dispersion.
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We summarize the results observed in Figures 24 and 23; signs refer to (MAP −

truth)/truth:

• Collision Time: broader posteriors compared to last merger; errors mostly
in [−40%, 20%] with a predominantly negative bias (underestimation). The
larger spread vs. the last–merger is consistent with snapshot discretization
and the intrinsic difficulty of predicting future timing.

• Collision Velocity: tighter than the last–merger; errors ≈ ±5% (previously ∼

[−5%, 10%]). Median tracks y = x well in velocities above the 103 km/s.

• Main Cluster M500c: small dispersion; errors ≈ ±2% with medians on the
identity unless below 1014M⊙.

• Subcluster Mass: similar to the last–merger; errors ≈ ±4% and mild, mode–centered
shrinkage, but the median do not follow the identity line.

• Merger Mass Ratio: same qualitative limitation as last merger—relative errors
inflate near zero (bounded fraction); but the MAP median follows the identity
line in ratios below 0.5.

• Pericenter Distance: slightly broader than the last–merger; errors mostly in
[−20%, 20%], with gentle S–shaped median and sign change around the
modal scale.

Overall, the next–merger results mirror the last–merger findings but with wider
posteriors and slightly larger errors where the forward prediction is intrinsically
harder (time and pericenter). Calibration (medians near y = x) and the MAP accu-
racy remains good for Collision Time, Collision Velocity, and Main Cluster M500c,
and the model transparently expresses uncertainty where the conditioning is less
informative or the target is intrinsically ill–behaved (mass ratio, extreme pericen-
ters).
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S I M U L AT I O N D ATA A N D X - R AY M A P S C O N S T R U C T I O N

The main source of X-ray emission from galaxy clusters is thermal bremsstrahlung
(free-free emission), that is the result of the deceleration of a free electron in
the Coulomb field of an ion, producing a continuum spectrum. The X-ray spec-
trum, also shows a contribution from line emissions which arises from highly
ionized electron transition from higher to lower energy orbits that can seen in
elements such as oxygen (O), magnesium (Mg), silicon (Si), and iron (Fe) [99]. Al-
though these metal emission lines contribute less to the X-ray luminosity than the
bremsstrahlung, but prominent in softer X-ray energies (below ∼2 Kev) and gives
insights into the chemical compositions state of the ICM [16].

For this thesis, we use the intrinsic X-ray maps from the main 352 primary-
zoom halos of the TNG-Cluster simulations used in Nelson et al. [113]. The X-
ray emissivity of each gas cell is computed using its density, temperature, and
metallicity following the APEC collisional ionization equilibrium model, including
both continuum and line emission [154]. The maps are constructed by projecting
the emissivity through the adaptively-sized Voroni gas cells using a cubic-spline
kernel integration scheme as detailed in Nelson et al. [113].

The maps chosen for this thesis represent a field of view of 4 R200c (i.e., ±2 R200c

from the cluster center) and a line-of-sight depth of 2 R200c, ensuring that both the
core and the surrounding outskirts of the cluster are captured. The final maps have
a pixel resolution of 2000× 2000, providing high spatial detail. The projections are
also taken along three orthogonal axes of the simulation box (x̂, ŷ, and ẑ). Since
the clusters are oriented randomly, theses projections gives us independent and
statistically random viewing angles for each cluster. Given the triaxial nature of
clusters, the three projections can be treated as different sample. As can be seen
in Figure 25, the projected surface brightness looks very different across the three
axes.

Figure 25 shows the X-ray surface brightness maps of four halos across three
projections, representing the variety across two key classification: dynamical state
and cool-core structure. The top two rows, represent dynamically relaxed clusters,
while the bottom two rows are non-relaxed clusters. The first and third row also
represent strong cool-core (SCC) clusters, and the second and fourth row are non
cool-core clusters (NCC). The classification into SCC and NCC is based on the
criterias defined in Lehle et al. [93]. The criteria used here is based on the cooling
time, where a system is classified as SCC if its central cooling time tcool < 1 Gyr,
and NCC if tcool ⩾ 7.71 Gyr.

The dynamic state of each cluster is determined according to Ayromlou et al.
[8] within two main criteria: a cluster is relaxed if (i) the distance between its
center of mass and its most bound particle is less than 0.1R200c, and (ii) the mass
ratio between the central subhalo and the host cluster exceeds 0.85. The clusters in
Figure 25 satisfies both of the conditions to be considered relaxed or non-relaxed.

In Figure 26, the evolution of the same four clusters shown in Figure 25 at z = 0,
0.2, 0.5, and 1 along the x̂ projection axis. It can be seen that the relaxed SCC
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systems tend to preserve their peaked surface brightness distribution, while non-
realxed and NCC clusters, often show more change across the cosmic time.

In the end, our final sample is consisted of the intrinsic X-ray luminosity maps
for the 352 primary-zoom halos and their main progenitors spanning eight full
snapshots in the redshift range 0 ⩽ z ⩽ 1. By taking three different projection for
each of them, the dataset is includes 8448 maps.
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Figure 25: X-ray surface brightness maps (in log10(erg s−1 kpc−2)) for representative clus-
ters across three projections (columns) and four classification groups (rows):
relaxed SCC, relaxed NCC, non-relaxed SCC, and non-relaxed NCC. Each pro-
jection axis reveals a different morphology due to the triaxial nature of clusters.
These differences highlight the statistical independence of the projections, which
we treat as separate data points in later analysis.
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Figure 26: Evolution of the X-ray surface brightness maps (along the x̂-axis) for the same
four halos shown in Figure 25. Each row corresponds to one halo and the
columns show snapshots at redshifts z = 0, 0.2, 0.5, and 1. Relaxed SCC clus-
ters maintain regular and centrally concentrated morphologies, while NCC and
non-relaxed clusters display disturbed, asymmetric, and evolving structures.
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C O N T R A S T I V E L E A R N I N G O N X - R AY M A P S

14.1 data preprocessing (x-ray)

The first step in our contrastive learning pipeline is converting the intrinsic X-
ray maps explained in Section 13 into normalized FITS images. This is done to
prevent our model to exploit the brightness differences between maps, and instead,
emphasize on the structure over absolute brightness. Each halo at a given snapshot,
the projected X-ray luminosity is processed into a two dimensional image along a
projection axis, and these maps are normalized using the following method which
is similar to what is used in Chadayammuri et al. [28].

Each image is normalized such that the 99th percentile pixel value in the central
10% area of the image is set to 1. For getting this central 10% region, a square
with length of 31.6% (i.e.,

√
0.1) of the full image size is chosen within which the

99th percentile pixel value is chosen. Following this, all pixel values 4 orders of
magnitude or more fainter than the central 99th percentile value are set to zero.
Our final image, will have all of its pixel values scaled between the minimum
value (0) and maximum value (1).

This preprocessing step offers several advantages. From an astrophysical per-
spective, it effectively suppresses irrelevant background noise and mitigates the
influence of extreme dynamic range across images, thereby enhancing the visibil-
ity of key morphological features such as cluster cores and merging substructures.
From a machine learning perspective, normalizing the input in this way reduces
the variance across the dataset, which is known to stabilize contrastive learning
objectives and improve convergence. Moreover, by removing global intensity infor-
mation and enforcing scale invariance, we ensure that the network learns repre-
sentations based purely on spatial structure rather than being biased by absolute
brightness, which in our context is a nuisance parameter rather than a meaningful
signal.

The processed maps are then saved as normalized FITS files, which are the in-
put for the self-supervised training pipeline described in the following sections.
Each FITS file is a single channel normalized X-ray map of a cluster with its own
snapshot, halo ID and projection axis.

14.2 input handling and data augmentation

To prepare for data augmentation, each normalized array should be first converted
into a standard image format to support standard computer vision libraries, such
as torchvision [121]. For this purpose each normalized array is first rescaled to
[0, 255] range, and then converted to 8-bit unsigned integers. This will result in a
single-channel grayscale image that will go through a sequence augmentation that
can simulate observational diversity (the set of augmentations that are used here,
are the same set of augmentations used in Chadayammuri et al. [28]).

121



122 contrastive learning on x-ray maps

Instead of using a predefined augmentation pipelines (e.g, the ones created for
SimCLR in lightly.ai [178]), we design our own set of augmentations customized
for this thesis. The augmentation pipeline has three main categories:

shape invariances :

• Random horizontal and vertical flips: Each image is independently flipped
along the vertical and horizontal axes with a probability of 0.5 to ensure that
the model is insensitive to mirror symmetries.

• Random rotations: Random rotation in the range [−90◦,+90◦] applied to
images enhancing model’s rotational invariance.

geometric transformations :

• Zoom: Random affine scaling with zoom factors sampled from the range
[0.1, 0.15].

• Affine translations: Random translations up to 25% of the image size along
both axes, accounting for off-centered targets or misalignment.

texture invariances :

• Gaussian blur: Kernel blur applied with standard deviation randomly sam-
pled in the interval [0.001, 1.0], introducing a range of blurring effects corre-
sponding to variable image sharpness.

• Gaussian noise: Additive noise sampled from a Gaussian distribution N(0,σ2),
where the standard deviation σ is defined as σ = µimage/SNR. Here, µimage

denotes the mean intensity of the input image, and the signal-to-noise ratio
(SNR) is randomly drawn from a uniform range between 4 (relatively strong
noise) and 8 (small perturbations and milder noise) for each image. The noise
level is proportional to image brightness, maintaining realistic perturbation
magnitudes across the dataset.

To generate training pairs for constrastive learning, each image has to go through
two random augmentations from the list above. This process is implemented us-
ing the MultiViewTransform class from the lightly library, where two randomly
selected augmentation of each image, make a pair of transformed views (v1, v2)
[178]. These pairs, remain semantically matched and serve as positive samples for
contrastive loss optimization which will be explained in detail in 14.3.

After the augmentations, the images are turned in to PyTorch tensors, which
are rescaled back to the range of [0, 1], and normalized by subtracting a mean of
µ = 0.50 and divided by the standard deviation of σ = 0.25. This normalization
helps stabilizing the training procedure and a more efficient convergence [56].

14.3 simclr : a contrastive learning framework

To learn robust representations of galaxy cluster X-ray maps without using any
labels, we use the SimCLR algorithm (Simple Framework for Contrastive Learning
of Visual Representations) [29], a self-supervised contrastive learning method. The



14.3 simclr : a contrastive learning framework 123

core idea of the SimCLR is to train a convolutional neural network to maximalize
the similarity between different augmented views of the same images and bring
them closer in the representation space, and push the views of different images
apart from each other.

In SimCLR, as mentioned in section 14.2, each input goes through two ran-
dom augmentation and creates a pair of correlated views. These views are passed
through am encoder network (mainly a convolutional neural network) to get the
representation space. These representations further undergo a small projection
head which brings them into a space where the contrastive loss is applied. The
contrastive loss function, as the name suggests, encourages the model to maximal-
ize the similarity between the positive pairs while minimizing the similarity with
the rest (negative pairs) within one batch [29].

Mathematically, given a batch of N images, SimCLR creates 2N augmented
views (2 random augmentations per each image) and treats each positive pair
(i,j) as similar, and the remaining 2N− 2 are considered as negative pairs. The con-
trastive loss function can be achieved mathematically as the normalized temperature-
scaled cross-entropy loss (NT-Xent):

Li,j = − log
exp(sim(zi, zj)/τ)∑2N

k=1 1[k̸=i] exp(sim(zi, zk)/τ)
(31)

where sim(zi, zj) is the cosine similarity between the projected features zi and
zj, and τ is a temperature parameter controlling the sharpness of the distribution.

The SimCLR architecture consists of three main components:

1. Encoder: A convolutional neural network (here is ResNet-18) that maps input
images to high-dimensional representation space.

2. Projection head: A multi-layer perceptron (MLP) that projects these repre-
sentations into a lower-dimensional latent space where the contrastive loss is
applied.

3. Contrastive loss: The NT-Xent loss that optimizes the latent space by con-
trasting positive and negative pairs within the batch.

SimCLR does not need a specific architectures or memory banks, and relies
mainly on large batch size to provide diverse negative samples within each training
step. This framework, enables us to learn a representation space that captures
relevant structure information. In this work, SimCLR is used on X-ray maps (this
part), radio maps (part vi), and both (part vii). This result in a representation
space, which will be the input to the conditional invertible neural network used
for posterior inference, which will be described in the next sections.

In this work, we use a modified ResNet-18 architecture, which is pretrained
on ImageNet, with the classification head removed. Since our inputs are single-
channel FITS images, the first convolutional layer is adapted to accept a single
channel rather than three (RGB). This is done by replacing the first layer with a
convolutional filter that initialize it by average the original RGB weights across
the channel dimensions. The resulting encoder f(·) maps input images into high-
dimensional feature vectors.

Following the encoder, we add a non-linear projection head g(·), which maps
the features to a 128-dimensional latent space where the contrastive loss is applied.
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We use the projection head implementation from the lightly library, consisting of
two fully connected layers with a ReLU non-linearity in between [178].

14.4 training procedure

Our contrastive learning model uses SimCLR framework (section 14.3 which is im-
plemented by PyTorch Lightning enabling training across multiple components;
data augmentation, model definition and optimization [178]. Training begins by
initializing the SimCLR model class. As mentioned in section 14.3, ResNet-18 is
the backbone that is used as the encoder with its classification head removed. The
first convolutional layer is redefined to accept single channel FITS images as input.

Each FITS image goes through a PyTorch-Compatible dataset class that loads the
single-channel images and applies two randomly selected augmentations (section
14.2). This results in a pair correlated views of (v1, v2), which makes the positive
sample. The augmented samples are organized into batches, which is configures
with a custom collate function to return the view pairs and their corresponding
filenames. For each batch of size N, the model receives two tensors representing
the positive pairs of the same set of N images. We use a batch size of 64, four
worker threads for parallel data loading. To make sure that each training epoch
sees a varied set of samples, the dataset is shuffled at the start of each epoch.

During training, each augmented view goes through the shared encoder network
based on the ResNet-18 network. As mentioned in section 14.3, ResNet-18 is the
backbone that is used as the encoder with its first convolutional layer modified for
single-channel fits images. The classification head is removed, and the final output
feature vector from the network, which will be used in the rest of the thesis, as it
captures the morphological features learned by the model.

The representation space will further pass through the projection head, which
is consisted of two fully connected layers, to produce a 128-dimensional represen-
tation space. This projection head, maps the high-dimensional encoder features
into a representation space where the contrastive loss (equation 31) will be ap-
plied. After the training, the projection head is discarded, and the encoder is used
as a frozen feature extractor to generate representation space for the next steps,
including conditional inference of cluster properties.

Given a batch of N samples, the NT-Xent loss is calculated over 2N views (2 aug-
mentations per each). The augmented views are passed through the encoder and
the projection head, resulting in an embedding (representation) pair of z0 and z1.
These are then passed to the NT-Xent loss (equation 31), where for each positive
pair, the remaining 2(N− 1) embeddings (representations) in the batch serves as
the negative. This encourages the positive pairs to have similar embeddings (rep-
resentations) while pushing apart the remaining negative pairs sampled from the
current batch. This will shape the encoder’s representation space to reflect mean-
ingful structural similarity without using any labels [29].

Because SimCLR pretraining is entirely self-supervised; using only within-batch
positives (two augmentations of the same sample) and negatives (the remaining
2(N− 1) views). Therefor, it does not require a supervised train/val/test split for
optimizing the NT-Xent objective. No labels are consumed, and hard negatives are
sampled from the current batch, so the representation learning stage can leverage
the full unlabeled corpus without risking label leakage. This practice is standard in
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contrastive/self-supervised pipelines and is also used directly in Chen et al. [29].
We therefore pretrain the encoder on all intrinsic maps and only introduce train/-
val/test partitions in next steps, when training and evaluating the downstream
cINN to ensure unbiased assessment.

The optimization process is handled by stochastic gradient descent (SGD) with
a momentum coefficient of 0.9 and weight decay of 5× 10−4 for L2 regularization.
A cosine annealing learning rate scheduler is used to reduce the learning rate
smoothly from an initial value of 0.06 over the course of 100 epochs. The training
loop is executed on a single GPU using bfloat16 mixed-precision computation,
which improves memory efficiency while preserving training stability.

The training pipeline is orchestrated using the Trainer module from PyTorch
Lightning. During training, model checkpoints are saved periodically based on the
contrastive training loss with the best three and the final model saved to the disk.
After 100 epochs, the final model weights, preserving the trained representation
space, are saved for further steps.

14.5 representation extraction and postprocessing (x-ray)

When the training is complete, we extract and analyze the learned representa-
tion space. This process involves three primary stages: generating a representation
space from the trained model, projecting it into a two dimensional space using
UMAP, and visualizing the representation space via grid and nearest-neighbor
plots.

For generating the representation space, the trained SimCLR encoder will be
used to extract the vector representation for each input FITS image. We first load
the trained SimCLR model, and each test image is passed through the same pre-
processing pipeline (section 13. During the inference, the batches are forwarded
through the encoder, while the projection head (used exclusively during training)
is discarded. The result of this, is a 512 dimension feature vector (representation)
for each input, which is flattened into a 1D vector. Representations for each batch
are also concatenated across all the batches and ℓ2-normalized (i.e., each embed-
ding vector vi is transformed to ṽi = vi

∥vi∥2 ) to ensure consistent scale and fair
distance-based evaluations.

Since the representation space has a dimension of 512, for visualization we apply
the UMAP (Uniform Manifold Approximation and Projection), to projects the high-
dimensional representation space into a two dimensional space. UMAP is a non-
linear technique applied for reducing the dimensions that preserves both local and
global structure modeling the high-dimensional data manifold and optimizing a
low-dimensional graph layout [102].

For visualizing we can use grid visualization to help reveal spatial clustering
patterns. For this purpose, we normalize the UMAP coordinates to a G×G grid
and assign each image to each corresponding grid. For normalization we use the
min-max normalization:

xnorm
i =

⌊
(xi − xmin)

(xmax − xmin)
· (G− 1)

⌋
, ynorm

i =

⌊
(yi − ymin)

(ymax − ymin)
· (G− 1)

⌋
This makes sure that each 2D UMAP is assigned to a unique cell on the grid

within [0,G− 1]× [0,G− 1]. A subset of images are chosen randomly to be shown
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Figure 27: Grid visualization of the learned representation space of X-ray map represen-
tation space. Each image corresponds to a UMAP-projected point in the rep-
resentation space. Clusters with similar morphological features tend to occupy
adjacent cells, revealing locally smooth organization in the representation space.

on the grid. These images are then placed on the grid, with their positions corre-
sponding to their grid coordinates.

Figure 27 shows the resulting grid visualization for the learned representation
space of the X-ray maps, with grid size G = 15. Clear groupings of visually similar
X-ray morphologies emerge, suggesting that the encoder has learned to capture
meaningful structural information. In particular, adjacent cells often contain clus-
ters with comparable core brightness or elongation, indicating that the representa-
tion space is smooth and preserves astrophysically relevant features.

This procedure yields a mainfold in which morphologically similar clusters tend
to be placed in neighboring cells, reflecting local continuity in the learned repre-
sentation space. By visualizing the representation space in this way, we can directly
inspect whether clusters with related structural features are organized coherently.

In Figure 27, we see few trends: most of the merging galaxy clusters appear on
top while relaxed clusters appear mainly the bottom. It also can be seen that from
bottom right to bottom left we go from cuspy to flatter radial profiles, and going
from top left to bottom right, the transition from merging system with similar sized
clusters to different component sizes on the top right.
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To further evaluate the structure of the learned representation space, we per-
form nearest-neighbor analysis. For a set of randomly selected images, we retrieve
their k-nearest neighbors using Euclidean distance in the 512 dimensional repre-
sentation space. This allows us to evaluate by eyes whether the model has learned
meaningful, morphologically coherent representations. Because embeddings (rep-
resentation space) are ℓ2-normalized, Euclidean distance is monotonically related
to cosine dissimilarity (∥u − v∥2 = 2 (1− cos θ)), making it an appropriate choice
for neighborhood queries. And since the nearest neighbors are chosen based on
their distance on the 512 dimensions, it evaluates the representation space without
the distortions introduced by nonlinear dimensionality reduction such as UMAP.

In figure 28, we display 5 nearest neighbors for 6 randomly chosen X-ray maps.
We can see that the nearest neighbors share similar X-ray morphologies. The near-
est neighbor also displays clusters with similar morphologies as nearest neighbors
of each other. These visualizations provide intuitive evidence that the SimCLR-
based model captures meaningful similarities between galaxy clusters. The learned
representation space show local continuity, reflect high-level structure, and form
a promising basis for downstream tasks such as clustering, anomaly detection, or
supervised fine-tuning.

So far, all of our evaluations have been done without using access to any labels.
For the last evaluation plot, we will use the physical properties of the galaxy clus-
ters used in this training. These properties are the observable and unobservable
(merger) properties from table 4 and 5 in Figures, 29, and 30, and from table 6 in
Figures 31 and 32.

For each selected property, we visualize the 2D UMAP projection of the represen-
tation space using a hexagonal binning plot, with the color of each bin representing
the value of the physical quantity. For each bin, the average value of the label is
computed and shown using a continuous color map. Taken that during the train-
ing, our model had no access to any labels (properties), this analysis can show us
whether our representation space correlated with key properties of galaxy clusters.

The emergence of smooth, label-correlated gradients over the representation
space manifold provides strong evidence that the self-supervised model captures
latent physical relationships. These results motivate further downstream tasks,
such as cINN only using these representation spaces instead of any observables
which we will further discover in the next chapter.
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Figure 28: Nearest-neighbor retrieval in representation space. Each row shows one anchor
FITS image (far left) and its k = 4 nearest neighbors. The learned representa-
tions capture structural similarities, with visually similar X-ray morphologies
grouped together.
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Figure 29: UMAP projection of representation space learned from SimCLR training on X-
ray maps, colored by mean binned values of halo and BCG observables (Table 4).
Smooth gradients across the manifold indicate that the SimCLR representation
encodes global scaling relations, despite the model being trained without access
to labels.
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Figure 30: UMAP projection of X-ray representation space, colored by binned mean values
of ICM core and dynamical properties (Table 5). Clear trends, show that the rep-
resentation space captures thermodynamical and dynamical state information.
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Figure 31: UMAP projection of X-ray representation space, colored by the binned mean
values of last–merger parameters (Table 6). Strong coherent gradients suggest
that the representation space retains signatures of recent merger activity in the
cluster morphologies.



14.5 representation extraction and postprocessing (x-ray) 131

Next Collision Time Next Collision Velocity Next Main Cluster M500c

Next Subcluster Mass Next Merger Mass Ratio Next Pericenter Distance
8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

Ne
xt

 C
ol

lis
io

n 
Ti

m
e 

(G
yr

)

3.05

3.10

3.15

3.20

3.25

3.30

3.35

3.40

3.45

Ne
xt

 C
ol

lis
io

n 
Ve

lo
cit

y 
(lo

g(
km

/s
))

14.2

14.4

14.6

14.8

15.0

Ne
xt

 M
ai

n 
Cl

us
te

r M
50

0c
 (l

og
(M

))
13.35

13.40

13.45

13.50

13.55

13.60

13.65

13.70

Ne
xt

 S
ub

clu
st

er
 M

as
s (

lo
g(

M
))

0.1

0.2

0.3

0.4

0.5

0.6

Ne
xt

 M
er

ge
r M

as
s R

at
io

2.3

2.4

2.5

2.6

2.7

Ne
xt

 P
er

ice
nt

er
 D

ist
an

ce
 (l

og
(k

pc
))

Figure 32: UMAP projection of X-ray representation space, colored by the binned mean
values of next–merger parameters (Table 6). The presence of smooth structures
indicates that the representation space also encodes information predictive of
upcoming merger events.
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C O N D I T I O N A L I N V E RT I B L E N E U R A L N E T W O R K W I T H
X - R AY R E P R E S E N TAT I O N

15.1 data preprocessing for cinn

In this chapter we try to infer the unobservable properties of merging galaxy clus-
ters by using conditional invertible neural networks (cINNs). The required inputs
for this pipeline is the learned representation space from our contrastive learning
method (chapter 14), and the derived physical properties of mergers (described
in section 9.2). In this section we will take a look at the complete preprocessing
pipeline used for preparing the data.

We start by filtering the merging parameters (table 6) similar to what was ex-
plained in section 10.1, our sample is made of the galaxy clusters who have gone
through at least one merger event based on its definition in 9.2. After filtering,
same as section 10.1, the values are scaled to zero mean and unit variance, by sub-
tracting the mean and dividing them by their standard deviation for each target
dimension :

Yscaled
j =

Yj − µj

σj
(32)

where µj and σj are the mean and standard deviation of the j-th target variable
across all clusters and Yj and Yscaled are the raw and scaled target respectively.

This transformation ensures that all of the target variables are on a similar scale,
which helps the model to train more efficiently and reduces the chance of certain
variables dominating the learnign process only for having a larger value. Unlike
techniques such as min-max normalization (which forces the values in a fixed
range), standardization keeps the original distribution function, which is very im-
portant when modeling physical processes.

And in the end, similar to section 10.1, to make future interpretation and evalu-
ations possible, both the standardized target values and the fitted StandardScaler
object (containing the original means and standard deviation) are saved. This al-
lows us to convert the model’s output back to their original values (before scaling).

The representation space that will be used as the inputs are derived from the
SimCLR-trained encoder (14), and saved as an array of shape (Nproj,Demb) where
each row corresponds to one projected view of a galaxy clusters. Each of these
embeddings (representations) also have a matching filename that encodes the halo
ID, snapshot number and the projection axis of the original FITS image. To link
these image embeddings (representation) with their target values, a unique key
for each data based on its haloID, snapshot number and projection is created.

On the other hand, target merger parameters and metadata (halo ID and snap-
shot) are initially defined per galaxy cluster without accounting the different pro-
jections. To create a one-to-one correspondence between each image embedding
(representation) and its physical parameters, the meta data and the target arrays
are replicated three times - once for each projection. This results in a fully aligned
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dataset with shape (N,Demb) for the embeddings and (N,Dtarget) for the target
values, where N is the total number of projected images after replication.

The learned representations generated by passing each image through the en-
coder network are loaded and matched with their associated halo identifiers, snap-
shots, and projection axes using a filename normalization routine. This ensures
that embeddings are correctly aligned with their respective metadata entries. The
embeddings are then stacked into a matrix Erep ∈ RN×D, where D denotes the
embedding dimensionality (D = 512).

To normalize the representation space and ensure consistent scaling across di-
mensions, each feature is standardized producing a zero mean, unit-variance ver-
sion Ẽrep which ensures that clusters is not biased by the scale differences across
features. After that a 80/10/10 split is applied by randomly partitioning the galaxy
cluster into training, validation, and test groups. Of the 8448 galaxy clusters, 6192

have experienced a past merger and 5916 will undergo a future merger. These to-
tals correspond to splits of 4953/619/620 for last-merger samples and 4732/592/592

for next-merger samples.
To construct a Mixture-of-Experts (MoE) framework that reflects the structure

of the learned representation space, we apply unsupervised clustering [148]. Since
our representation space has been scaled, any scale-based biases across different
feature dimensions is prevented, and all features are treated equally when mea-
suring the distance. The clustering is done by using the K-Means algorithm with
k = 10 experts, which helps dividing the high-dimensional representation space
into smaller and more manageable regions. It is important to note that the cluster-
ing step is performed only on the training portion of the dataset. This ensures that
the expert definitions are based solely on the data seen during training, preventing
any data leakage and the keeping the evaluation reliable [94].

Once the expert centroids are computed using the training data, each data point,
whether in the training, validation, or test set, will be assigned to the nearest expert
label based on its proximity to the learned centroids. These labels define the mech-
anism used to direct each sample to the corresponding expert during the MoE
training phase. While the full dataset receives expert labels, each expert model
is trained only on those training samples whose representations lie within its as-
signed expert. This strategy allows each expert to specialize in modeling a specific
region of the representation while preserving the integrity of the data split and
supporting generalization to unseen data.

15.2 model architecture and training

The model used in this section, is the exact model used in Part iv and section 11.1.
The only main differences will be the dimensionality of the input which would
change the subnet input structure.

In this part, the conditional input c consists of a 512-dimensional representation
space from contrastive learning (see Section 14), while the input feature vector
stays the same (x ∈ R6) is split evenly such that xa, xb ∈ R3. As a result, the
subnet receives Din = 3+ 512 = 515 input features.

The output dimensionality Dout, is also similar to Part iv, which is Dout = 3 · (3 ·
10− 1) = 87, where RQS blocks, with K = 10 are used. The hidden layer also stays
similar with Dhidden = 256 across all subnetworks.
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Thus, in our implementation, each subnet used in a coupling block consists of
the following sequence of layers:

Linear(515, 256) → ReLU → Linear(256, 256) → ReLU → Linear(256, 87)

The training objective is similar to what was described in the scalar training
section 11.2; we maximalize the conditional likelihood of the targets igven the con-
ditioning input, by minimizing the NLL loss (equation 28). The training is similar
to the scalar pipeline but with the difference that here the condition is the learned
representation space. Also in contrast to the scalar pipeline, where the cINN is
trained on all clusters, we use a Mixture of Experts (MoE) strategy [148].

Using the MoE training paradigm, a separate conditional invertible neural net-
work (cINN) is trained for each local region of the representation space. Specifically,
the conditional space RDc is partitioned into M = 10 clusters via k-means cluster-
ing, using only the training embeddings (as explained in section 15.1) [94, 148].
Each expert m ∈ 0, . . . ,M− 1 is assigned the subset of training samples whose
conditional embeddings are closest to the m-th expert center. This strategy encour-
ages each expert to specialize in modeling a localized conditional density pm(x | c),
improving accuracy in heterogeneous regions of the input space.

Each expert m ∈ 0, . . . ,M− 1 is trained independently, so that training yields an
ensemble of specialized cINNs rather than a single global model. For each expert,
the training and validation loaders are restricted to the training and validation
indices belonging to that cluster, while test samples remains defined globally. A
minimum threshold of 50 training samples per cluster was adopted to avoid un-
stable optimization in poorly populated experts; however, in practice all experts in
our dataset exceeded this threshold, so no experts were discarded.

For expert m, the training dataset consists of input target pairs (x, c). During
each epoch, the training data is divided into batches of size 32 and are passed
through the model. For each batch, the forward transformation z = f(x, c) and the
the log-determinant log |det(∂f/∂x)| (section 11.2) are computed to evaluate the
NLL loss in accordance with Equation 28. The gradients are backpropogated and
used to update the parameters of the expert network using the AdamW optimizer
with a learning rate of 5× 10−4, β1 = 0.9, β2 = 0.999, and an ϵ value of 10−6 [79].
To ensure training stability, gradients are clipped to a maximum ℓ2 norm of 5.0.

The learning rate is adjusted dynamically using a ReduceLROnPlateau scheduler
[121], which reduces the learning rate by a factor of 0.8 if the validation loss does
not improve for 5 consecutive epochs, with a minimum improvement threshold
of 10−4. Each expert is trained for 200 epochs, and at each epoch, the model is
evaluated on the validation set using the NLL loss (but with gradient computations
disabled). In the end, the model with the lowest validation loss is retained. The
training and validation losses are logged over time to monitor the convergence
behavior and detect signs of overfitting.

Once training is complete, the model can be used for probabilistic inference.
Given a new galaxy clusters, a feature space in the representation space c, the
KMeans that was used during preprocessing is reused, and each galaxy cluster is
assigned to the expert of the nearest stored center in the representation space. Then
the corresponding expert will be used to get multiple latent samples z ∼ N(0, I) and
invert them via x = f−1(z, c) to obtain conditional samples from p(x | c).
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15.3 inference and postprocessing

Once the conditional invertible neural network (cINN) or the ensemble of expert
models in the Mixture of Experts (MoE) framework has been trained, the learned
mapping f(x, c) can be inverted to perform probabilistic inference on the merger
parameters x conditioned on new input features c. Postprocessing begins by gen-
erating samples from the learned conditional distribution, f−1(z, c) = x, and by
doing this multiple times, we get the p(x | c).

Similar to what we had in Section 11.3, to approximate the posterior distribution
p(x | c) using a trained cINN model, the sampling procedure is straightforward:
for each representation ci, we draw zj ∼ N(0, I) for j = 1, . . . ,N, and compute xj =

f−1(zj, ci). In the MoE setting, however, the conditional space is partitioned into
M experts. Each representation ci, is assigned to the nearest expert center using
Euclidean distance, and the corresponding expert is used to generate posterior
samples.

The rest of the postprocessing, including calculating the MAP, the prior distri-
bution, etc. is similar to what was explained in the postprocessing part for scalar
conditions, as in section 11.3.
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R E S U LT S A N D D I S C U S S I O N S ( X - R AY C O N D I T I O N I N G )

16.1 posterior distributions with x-ray conditioning

We repeat the visualization of conditional posteriors p(x | c) for a subset of test
galaxy clusters, now conditioning on the learned X-ray representation (embedding)
c rather than scalar observables (as in section 12.1). From the saved test indices we
randomly select nrows = 15 clusters from the test set; for each condition ci we
draw nsam = 1000 posterior samples {x(s)i }

nsam
s=1 via the inverse flow (Sec. 11.3), map

samples to physical units, and arrange one target per column. Rows correspond
to distinct clusters (annotated with HaloID and redshift z on the left), columns
to merger parameters (Section 9.2). Within each panel we overlay the same four
elements defined in Section 11.3: a gray prior KDE (test-set marginal for context),
a blue posterior KDE for the chosen cluster, a gold MAP vertical line, and a red
ground-truth line. As before, prior and posterior KDEs are peak-normalized (only
shapes and locations are comparable), and nsam controls Monte Carlo smoothness
(we use nsam = 1000 here as well).

Compared to the scalar-conditioned case (Figure 17), the X-ray representation
space provides a richer conditioning signal: the blue posteriors contract around
the red truths across all targets, including those previously challenging (Merger
Mass Ratio, Subcluster Mass, Pericenter Distance), meaning that the inference is
more precise for most merger properties. The contraction is stronger than scalar
conditioning in most cases, except Collision Time. MAP markers (gold) coincide
with the truths in most cases, indicating improved identifiability under represen-
tation conditioning. In other words, although the posteriors remain comparatively
wide, they are well-centered on the ground truth, yielding accurate (low-bias) MAP
estimates despite residual uncertainty.

16.2 prediction performance of the cinn conditioned on the learned

representation space for x-ray maps

We repeat the evaluation of section 12.2, now conditioning on the learned repre-
sentation space of X-ray maps. Figures 34 and 35 are constructed identically: for
each target xd we bin the ground–truth axis into B = 20 equal–width bins and, for
every test object in a bin, draw nsam = 500 posterior samples with the inverse flow
(Sec. 11.3). Stacking those samples into the same binning yields a 20×20 heatmap in
value space. On the figures we have overlaid the white diagonal: y = x, with pos-
terior medians (solid black) and 10–90% quantiles (dashed). Figure 35 shows MAP
vs. truth with bin–wise medians and 10–90% envelopes, and the corresponding
relative errors ∆ = 100(MAP − truth)/truth.

Relative to scalar conditioning in section 12.2, the learned representation space
of X-ray maps provides a stronger, more discriminative context: posterior ridges
are slightly thinner in most targets except Collision Time and their median fol-
lows the y = x. Although it does not align exactly on the identity line, but the
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Figure 33: X-ray Representation conditioned posterior grids for 15 randomly selected test
clusters (rows) from 620 test samples, across all target merger parameters
(columns). Gray: prior KDE over the test split; blue: posterior KDE conditioned
on the embedding; gold: MAP estimate (vertical line); red: ground truth (vertical
line). Construction mirrors Figure 17, now with the learned SimCLR represen-
tation space of X-ray maps as the conditioner.
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linear increasing of the median line and the percentile lines shows better perfor-
mance than the scalar conditioning in previously challenging parameters. MAP
medians lie close to the identity for all targets, and the errors are mainly small for
most cases but Collision Time and Merger Mass Ratio which is high due to the
discrete nature of time, and approaching zero values. A mild, uniform shrinkage
(regression–to–the–mean) remains visible as a slight bending of medians toward
the global modal scale, but its amplitude is small.

Here we summarize the per-merger parameter cINN inference results:

• Collision Time: Both the posterior and the MAP median, and their percentile
lines follows the identity line. While the scatter of the posteriors are slightly
larger than the scalar version, the MAP scatter is lower with typical relative
errors within [−20, 40]% with only a faint positive bias at the extremes. The
relative higher error compared to the rest of the merger parameters is ex-
pected because time is sampled at discrete snapshots; percentage errors are
less forgiving under discretizations, even when absolute errors are small.

• Collision Velocity: The calibration in Collision Velocity is better than the scalar
conditioning performing better in lower velocities, with slightly tighter pos-
teriors. The MAP estimation shows lower scatter than posteriors, but both
have their median and percentile lines increasing linearly almost along the
identity lines without showing any signs of heteroscedasticity for lower ve-
locities (as of the case of scalar conditioning). The MAP also has errors
mainly ⩽ ±5% which is slightly smaller than the scalar conditioning. The
median shows a small percentile regression toward the global modal scale at
log10 v ≈ 3.2 km/s (as in the scalar case), with slight overestimation below
the mode and underestimation above it.

• Main Cluster M500c: The posterior calibration is performing almost simi-
lar to scalar conditioning, with slightly better performance in lower masses
and also tighter posteriors. The MAP estimaton also performs similar to
scalar condition with narrower quantiles around lower masses, but similar
relative MAP error ∼ ±2%. A very small bend toward the global mode at
log10(M500c/M⊙) ≈ 14.5 remains visible, but its amplitude is negligible rel-
ative to the total dynamic range.

• Subcluster Mass: Significantly stronger performance compared to scalar con-
ditioning for higher masses, with better calibration, tighter posterior and
quantiles for both posteriors and MAP estimations. Relative MAP errors
typically within ∼ ±2%. The median crosses y = x near the modal scale
log10(Msub/M⊙) ≈ 13.5, showing the same mode-centered shrinkage pat-
tern seen with scalar conditioning, but at much reduced magnitude.

• Merger Mass Ratio: Calibration performs significantly stronger toward higher
ratios with tighter posterior distributions and without heteroscedasticity. How-
ever, it is still the hardest due to its fractional/bounded nature; errors are
larger in relative terms at small ratios (denominator effect), but the MAP
median nonetheless increase linearly almost close to the identity lines.

• Pericenter Distance: Stronger posterior calibration and tighter posteriors with
tighter envelope compared to the scalar conditioning. The MAP estimation
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is increasing linearly almost along the identity line with MAP errors around
±10%. A gentle S-shaped median and a sign flip in the MAP bias around the
modal scale log10(dperi/kpc) ≈ 2.4 indicate mild shrinkage toward the mode.

Overall, learned representation space of X-ray map conditioning yields posterior
calibrations that are close to ideal (narrow, diagonal–aligned 2D histograms) and
MAP accuracies that are uniformly strong, with only small, interpretable regres-
sion–to–the–mean effects across all merging parameters. The great performance
can be explained by the relatively smooth gradient in the representation space
manifold, as in figure 31.

16.3 cross correlations : x-ray conditioned inference

In addition to the scalar conditioning explored above, we now assess whether
the cINN trained on X-ray maps is able to learn the cross correlations among
merger parameters. As in Section 12.3, we visualize all pairwise relations between
the merger parameters in a corner plot. For each test object, we draw nsam = 200

posterior samples, and plot the pooled posterior realizations (blue), MAP estimates
(gold), and ground truths (red). On the diagonal, we include the one-dimensional
KDEs of the corresponding marginals for posterior, MAP, and ground truth.

The interpretation of this visualization follows the same principles as in the
scalar case. Alignment between gold and red clouds indicates accurate MAP recov-
ery, while elongated blue posterior structure aligned with the red locus indicates
that the model has captured the correct correlation between parameters. Systematic
displacements of gold relative to red point to bias, and dispersed or multi-clumped
blue structures reflect residual ambiguity or multi-modality in p(x | c).

The correlation structure evident in Fig. 36 is consistent with the expectations
summarized in Section 12.3. Posterior samples, MAP estimates, and ground-truth
values collectively reproduce the qualitative trends anticipated from ΛCDM scal-
ing arguments. In particular, the X-ray conditioned inference successfully recov-
ers not only the correct one-dimensional marginals but also the underlying cross-
target correlations among merger parameters.
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Figure 34: Posterior versus ground truth for merger parameters under X-ray representa-
tion conditioning. Construction as in Figure 18 with B = 20 and nsam = 500

over the 620 test clusters. The white diagonal represents y = x. Black solid
lines: posterior medians; black dashed lines: 10–90% quantiles. The histograms
are rather wide, but the median mainly follows the diagonal without signs of
heteroscedasticity, indicating relatively good calibration and dispersion control.
The conditioning input is the representation space learned via SimCLR on in-
trinsic X-ray maps, as explained in Chapter 14.
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Figure 36: Corner plot across all merger parameters for X-ray conditioned inference. Diag-
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16.4 next–merger inference with x–ray representation space con-
ditioning

We repeat the X–ray–conditioned analysis for the next merger (future event), using
the same plotting protocol as in Sections 16.1 and 16.2. For each selected test cluster
we sample nsam = 1000 draws from p(x | c) via the inverse flow (section 11.3) and
visualize per–object posteriors as in the previous section.

Figure 37 shows 15 randomly chosen test clusters (rows) and one target per
column, with prior (gray), posterior (blue), MAP (gold), and ground truth (red).
Relative to the last–merger case (Figure 33), the overall picture looks the same but
with slightly broader posteriors, reflecting the increased uncertainty when forecast-
ing forward in time. Aside from this broadening, the qualitative behavior mirrors
the last–merger results.

Figures 38 and 39 summarize calibration and point–estimate accuracy across
the test set using B = 20 truth bins and nsam = 500 posterior draws per object
(as before). The 2D histograms remain aligned with y = x; the posterior medians
(solid black) increase linearly close to the identity line but with regression to the
mean stronger than the last merger. The 10–90% bands (dashed) increase linearly
but are slightly wider than in the last–merger case, again most visibly for Collision
Time.

The MAP estimate has lower scatter than the posteriors. The MAP median in-
crease linearly but again with regression to the mean across all merger parameters.
The MAP errors are almost the same as the last merger case, with the difference
that the MAP error in Collision Time is slightly lower than the last merger case; in
next merger the relative map error is ±20% while in the last merger, the error was
in range [−20, 40]%. It seems like that the MAP estimates for early mergers, are
more accurate for future merger events than previous merger history. The reason
for this can hide in the mode of next mergers lying in later times (∼ 12.4 Gyr) than
the last merger (∼ 8.7 Gyr) as can be seen in table 7, and since Collision Time like
the rest of merger parameters suffers from regression to the mean, this can be the
cause for larger error.

Per–target error ranges (next–merger, X–ray). Quantitatively, errors are very similar
to the last–merger representation space case (Sec. 16.2), with only mild broadening
where expected:

• Collision Time: The calibration is slightly worse than the last mergers, but with
the slightly wider quantile bands. The MAP estimate’s performance is similar
to the last merger, with the difference that we have relative errors ≈ ±20%
which is smaller of earlier mergers. This is expected, as for the last merger,
the recorded mergers are for earlier universe, which can be the reason of this
uncertainty.

• Collision Velocity: Similar calibration and percentile bands compared to the
last merger, with MAP errors mainly ⩽ ±5% which is just very slightly lower
than last merger.

• Main Cluster M500c: Both Posterior calibration and the MAP estimation per-
formance are similar to the last merger.
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Figure 37: X–ray representation space–conditioned posteriors for the next merger (15/592

test clusters). Construction mirrors Figure 33. Gray: prior KDE; blue: posterior
KDE; gold: MAP estimate; red: ground truth. Compared to last–merger infer-
ence, posteriors are slightly broader, particularly for Collision Time, consistent
with increased forward-prediction uncertainty.
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• Subcluster Mass: Both Posterior calibration and the MAP estimation perfor-
mance are similar to the last merger.

• Merger Mass Ratio: remains the most delicate (fractional, bounded); relative
errors inflate at small ratios, but the MAP estimation performance and the
posterior calibration remains identical to the last merger.

• Pericenter Distance: Both Posterior calibration and the MAP estimation perfor-
mance are similar to the last merger.

In short, conditioning on the X–ray representation space continues to yield rel-
atively well–calibrated next–merger inferences. The only systematic change with
respect to the last–merger is a modest, physically expected widening of the poste-
rior bands, mainly for Collision Time.

16.5 discussion

X–ray representation space yield well–calibrated posteriors whose medians track
y = x across targets (Figures 34, 35). Typical MAP scatter is: with characteristic
MAP error ranges: Collision Time (∼ [−20, 40]%), Collision Velocity (⩽ ±5%), Main
Cluster M500c and Subcluster Mass (∼ ±2%), Pericenter Distance (∼ ±10%). Mass
Ratio remains the most delicate (bounded/fractional) with larger relative errors at
small ratios (Figs. 34, 35). As seen in Figure 33, posteriors are contracted relative to
the empirical prior and vary across different clusters, indicating that X-ray repre-
sentation carries genuine conditioning signal. Posterior medians show gentle cur-
vature toward modal scales (classical regression-to-the-mean), but the calibration
diagnostics remain sound: median posterior increase linearly along the identity
line with small offsets. This indicates the representation space of X-ray maps carry
real information rather than merely reproducing prior structure.

While we see wider posteriors (compared to what we achieve in part vi) across
most merger parameters, the envelopes containing 80% of the posteriors were con-
sistently small, and the MAP estimation relative error is reliably low. This perfor-
mance however can be expected from relative smooth transition in Figure 31 across
most merger parameters.

what “smooth transitions” measure . Coloring the representation space
by a target and observing gradual color gradients (“smooth transitions”) indicates
that nearby representations tend to share similar target values (Figure 31). This is
reassuring, but there is a caveat that applies: UMAP is a nonlinear 2D projection of
a 512-D space and may distort distances and gradients, especially globally; even if
a gradient looks ragged in 2D, the full 512-D geometry can still be well organized.
Hence, imperfect smoothness in UMAP does not necessarily imply poor condition-
ing signal for the inference model. And in the end, the cINN consumes the full
representation space, not the UMAP, so imperfect smoothness in projection is not
diagnostic of poor conditioning.

what the cinn actually learns . The cINN, as explained completely in
chapter 11.1, is a single, joint density model over the full target vector x ∈ R6

(collision time, velocity, masses, mass ratio, pericenter) conditioned on the repre-
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sentation c ∈ RD. It learns an invertible map f : (x, c) 7→ z with tractable Jacobian
so that

logp(x | c) = logpZ

(
f(x, c)

)
+ log

∣∣∣det
∂f

∂x

∣∣∣,
with pZ = N(0, I). Each coupling block splits x = [xa, xb] and transforms xb via

a conditional rational–quadratic spline whose parameters are predicted from (xa, c);
masks and permutations alternate across blocks, yielding a flexible factorization
p(x | c) = p(xπ1

| c)p(xπ2
| xπ1

, c) · · · . Thus, all targets are modeled jointly and their
correlations are built into the likelihood.

why accuracy can remain high despite ragged umap gradients . Be-
cause the cINN learns p(x | c) jointly, it exploits cross-target structure that was
shown to hold in Figure 36. If, for a given region of c-space, some parameters
(e.g., masses, velocity) are tightly organized and strongly correlated with others
(e.g., pericenter, time), the flow can leverage those correlations to sharpen posteri-
ors even when the UMAP color map for a specific parameter looks less smooth. In
other words, the relevant information may be distributed across several parameters
and along directions that UMAP compresses.

The observed well-calibrated, narrow posteriors and small MAP scatter pattern
for many targets under X-ray conditioning despite less crisp 2D gradients for Colli-
sion Time and Pericenter Distance. This is consistent with (i) informative structure
residing in the full 512-D representation space, and (ii) the cINN’s ability to encode
the joint covariance of the targets (merger parameters).

regression to the mean vs . calibration. Gentle curvature of MAP bin
medians toward the population mode reflects finite-sample regularization and
overlapping morphologies: many distinct merger settings produce similar images,
so the posterior mean/median bends toward high-density regions. The cINN rightly
spreads probability mass across these alternatives (wide intervals), yet still places
the mode near the truth when certain features anchor a high-likelihood expla-
nation. Our diagnostics show that this shrinkage coexists with good calibration:
median posterior curves follow y = x, and the envelopes including 80% of the
posteriors are noticeably tighter around the identity line. Hence the broadening or
shrinkage is a faithful expression of uncertainty, not a modeling flaw.

wide posteriors and small map errors . We have seen in Figures 34

and 35, wide posteriors and small MAP errors. The width reflect genuine non-
identifiability in the image-to-physics mapping, which can include projection am-
biguities, snapshot discretizations of times, and overlapping morphologies can all
admit multiple plausible solutions. Our cINN captures this by allocating probabil-
ity mass across those alternatives. At the same time, the MAP of that distribution
can sit very close to the truth because some features in the representation space
still anchor a high likelihood explanation. a low MAP error does not imply the pa-
rameter is tightly constrained, decision-making should use the full posterior, not
just the point estimate. Conversely, preferring a sharper but miscalibrated poste-
rior could hide real degeneracies. Our results therefore indicate that the model is
both accurate (mode near the truth) and honest about uncertainty (wide intervals
where the data are intrinsically ambiguous).
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role of the mixture-of-experts (moe). The MoE partitions c-space and
trains local joint flows. This reduces global function complexity, and could separate
flat core and cuspy profiles, merging clusters with similar or different mass com-
ponents, and relaxed or disturbed clusters. This could improves calibration and
sharpness where a single flow would blur multi-modal structure. Expert domains
align with coherent bands in the representation space, supporting this interpreta-
tion.

intrinsic maps , transfer , and augmentation. Because our inputs are
intrinsic (no PSF/beam, background, Poisson statistics, or uv-coverage), we rely on
a physics-aware SimCLR augmentation policy (Section 14.2) to inject observing-
like nuisance variation while preserving merger morphology. flips/rotations build
orientation invariance; affine zoom and translations mimic centering/scale errors;
Gaussian blur approximates PSF/beam smearing; and additive Gaussian noise
with SNR sampled in [4, 8] introduces variable depth. That said, augmentation
is necessary but not sufficient: realistic forward modeling (e.g., X–ray: Poisson
counting, instrumental/background components, exposure/vignetting, PSF con-
volution, and bandpass/K–corrections) and/or unlabeled fine-tuning on real data
remain essential for full simulation to observation transfer.

next merger . The next-merger results closely mirror the last-merger case as
discussed above, but with expected modest broadening, most visibly for time of
collision. Similar to last merger, the median remains close to the identity lines,
however with a stronger regression to the mean. Overall, X-ray conditioning, as
expected form Figure 47, remains reliable for forecasting, with honest uncertainty
inflation of posteriors when forward prediction in intrinsically harder.
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Figure 38: Next–merger posterior versus truth for each merger parameter under X-ray rep-
resentation conditioning for the 592 test clusters. Same construction as Fig. 34

with B = 20, nsam = 500. White diagonal: y = x. Black solid lines: posterior
medians; black dashed lines: 10–90% quantiles. Medians remain close to y = x;
bands are modestly broader than for the last–merger, chiefly for Collision Time.
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The diffuse radio emission from galaxy clusters arises from synchrotron radiation
produced by relativistic electrons spiraling in µG-level magnetic fields of the in-
tracluster medium (ICM). These cosmic-ray electrons (CRe) are (re-)accelerated at
collisionless shocks generated during cluster mergers, via diffusive shock accel-
eration (DSA), yielding steep power-law spectra and highly polarized, elongated
features in projection (radio relics) that are typically found in the cluster outskirts.
In projection along the merger axis, such shock-related features can mimic cen-
trally located, halo-like morphologies, underscoring the importance of projection
effects when classifying radio structures [52, 179].

Relativistic electrons with Lorentz factor γ ≫ 1 in a magnetic field B radiate
synchrotron power

Psyn =
4

3
σT cγ2β2UB, UB =

B2

8π
,

peaked near the critical frequency

νc =
3

4π
γ2 eB⊥

mec
,

where B⊥ is the field component perpendicular to the particle velocity. If the elec-
tron distribution is a power law N(E)dE ∝ E−sdE, the monochromatic emissivity
scales as

jν ∝ nCReB
1+α
⊥ ν−α, α =

s− 1

2
.

Diffuse, elongated radio relics are widely interpreted as synchrotron emission
from relativistic electrons (CRe) accelerated at collisionless merger shocks and ra-
diating in µG intracluster magnetic fields. Lee et al. [91] model this by assuming
diffusive shock acceleration (DSA) injects a power-law CRe spectrum at each shock
with slope set by the shock compression (hence Mach number). They then integrate
the time-dependent CRe spectrum, including synchrotron and inverse-Compton
cooling, to obtain the monochromatic synchrotron emissivity jν; the local magnetic
field B is taken directly from the MHD simulation. The implementation follows the
analytic formalism of Hoeft and Brüggen [64], with a fixed electron acceleration
efficiency used to normalize the CRe energy density. The adopted normalization
corresponds to an upper–limit radio power for given shock and field strengths
and implies order-percent conversion of the shock kinetic energy flux into CRe for
M ∼ 2–5 shocks.

In the TNG-Cluster simulations, shocks are detected on–the–fly during the Arepo
simulation with the conservative shock finder of Schaal and Springel [143]. Shock
zones are first flagged by (i) converging flow (∇ · v < 0), (ii) alignment of ∇T and
∇ρ to reject contacts, and (iii) a minimum jump corresponding to M > 1.3. The
shock surface cell is then the location of maximum compression; the shock normal
is defined from ∇T (second–order accuracy), and upstream/downstream states are
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sampled as the first cells outside the zone along ± the normal [118]. From these,
the Mach number and the shock kinetic energy dissipation rate is computed as:

Ediss =
1
2ρ1(Mcs,1)

3Aδ(M) (33)

where ρ1, cs,1 are upstream density and sound speed, A is an effective shock
area, and δ(M) is the Rankine–Hugoniot thermalization efficiency.

In diffusive shock acceleration (DSA), electrons crossing a shock front gain en-
ergy through repeated scattering, and as a result they are injected with a power-
law distribution in energy, as in equation 34 where σ is the compression ratio
and γ = 5/3 for the ICM. The slope of this distribution depends on the shock
strength, which is usually expressed in terms of the Mach number. For very strong
shocks(M ≫ 1), the spectrum is relatively flat (σ → 4, s = 2), while for weaker
shocks the spectrum is steeper (s > 2), meaning there are fewer high-energy elec-
trons [42].

ne(E) ∝ E−s, s =
σ+ 2

σ− 1
, σ =

(γ+ 1)M2

(γ− 1)M2 + 2
(34)

There is also a natural upper limit to the electron energies. Acceleration com-
petes with energy losses from synchrotron radiation (emission in the presence of
magnetic fields) and from inverse Compton scattering (up-scattering of photons,
mainly from the cosmic microwave background). Where these losses balance the
acceleration, the spectrum cuts off at a maximum energy. Once electrons leave the
shock, they are carried downstream with the post-shock flow. As they move away,
they gradually lose energy through radiation. Importantly, these losses are stronger
for high-energy electrons, because the cooling rate increases with the square of the
electron energy [75].

The cooling strength depends on both the magnetic field in the intracluster
medium and on the background radiation field of the Universe as in equation 35.
The cosmic microwave background can be thought of as an effective magnetic field,
which grows stronger at higher redshift. Together, these determine how quickly the
electron spectrum steepens downstream of the shock [76].

Ccool =
σT

6πmec
(B2 +B2

CMB), BCMB ≃ 3.24 µG (1+ z)2, (35)

The population of shock-accelerated electrons is commonly normalized by as-
suming that a fixed fraction ξ of the shock’s dissipated thermal energy is trans-
ferred into non-thermal cosmic-ray electrons [64]. A value of ξ = 0.05 is often
adopted [91]; when combined with the dissipation efficiency, this corresponds to
an order-percent conversion of the shock kinetic energy flux into relativistic elec-
trons for Mach numbers M ∼ 2–5. This normalization should be regarded as an
upper limit, since weak shocks are likely over-luminous under this choice [128].

The resulting synchrotron emission at an observing frequency νobs can be ex-
pressed in the form derived by Hoeft and Brüggen [64],

dP
dν

= 5.2× 1023 W Hz−1

(
ξ

0.05

)(
Ediss

1044 erg s−1

)(
B

µG

) s
2+1

×

[(
B

µG

)2

+

(
BCMB

µG

)2
]−1(

νobs

1.4 GHz

)−s/2

Φ(M) .

(36)
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This relation shows how the radio power depends on the fraction of dissipated
energy injected into electrons, the shock energy flux, the magnetic field, the observ-
ing frequency, and the Mach number. The function Φ(M) describes the efficiency
of electron acceleration, approaching unity for strong shocks and declining steeply
for M ⩽ 3 [64].

Equation 36 is evaluated on the shock-surface cells of TNG-Cluster, using the
local Mach number (M), dissipated energy flux (Ediss), and magnetic field strength
(B) [91]. This procedure by construction produces very thin emitting layers, as the
radio emissivity is assigned directly to the shock surface; additional spatial broad-
ening due to downstream advection or radiative ageing is not explicitly included.
The underlying assumption is that the shock properties remain approximately con-
stant over a typical cooling time of order 108 yr, which is characteristic of GHz-
emitting electrons in microgauss-level magnetic fields. Intrinsic surface-brightness
maps are then obtained by line-of-sight projection, with three orthogonal views
shown for each system to illustrate the impact of projection effects [91]. Unless
stated otherwise, from here on the emissivity is evaluated at the ν = 1.4 GHz, a
standard reference frequency for radio-relic studies (also similar to VLA bands);
the model is frequency-scalable and can be re-evaluated at low frequencies (e.g.,
LOFAR bands) without changing the underlying methodology.

Figure 40 showcases the morphological diversity of intrinsic radio emission
across three orthogonal projections for four halos of TNG-Cluster spanning classes
commonly encountered in observations: a double relic, a single relic, an inverted
(center–convex) relic, and a system with no detectable diffuse emission at our in-
trinsic sensitivity. All panels use a fixed square field of view of 5000 kpc (i.e. 5

Mpc across, ± 2500 kpc about the center) and are binned onto a 200× 200 grid.
This corresponds to a uniform pixel scale of 25 kpc per pixel in the image plane.
Operationally, the emissivity attached to shock cells within the window is summed
into these pixels and divided by the pixel area to yield intrinsic surface brightness,
enabling uniform, like-for-like visual comparison across systems and projections.

Single relics appear when asymmetries in the merger (mass ratio, impact parame-
ter), the shock strengths, and/or the 3D sheet geometry place only one bright shock
within the field of view, or when projection suppresses the surface brightness of
the counterpart along the chosen line of sight [91, 179] (as seen in top row of figure
40). Double relics arise naturally after core passage, when two counter–propagating
merger shocks bracket the potential minimum and extend roughly perpendicu-
lar to the mass/X–ray elongation, producing the textbook, tangential pair seen in
second row of figure 40. It also clearly can be seen that relics are truly depen-
dent on their projection direction, with the relics no longer being observed on
the z projection. Inverted relics (convex toward the cluster center) are a geomet-
ric/projection effect of curved shock sheets in complex mergers: multi–body en-
counters or subsequent infall can bend and compress pre–existing shocks so that,
for some orientations, the brightest edge faces inward (third row of figure 40). Fi-
nally, non–detections occur when no sufficiently strong shock lies within the FOV at
that epoch, when shocks are viewed too face–on (short line–of–sight path through
the emitting sheet), or when intrinsic emissivity is low due to weak Mach numbers
and/or modest magnetic fields; outcomes expected in a cosmological population
even without instrumental effects [52, 91] (last row of figure 40).
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Figure 40: Diversity of intrinsic radio morphologies in TNG-Cluster. Rows (top to bot-
tom): single relic, double relic, inverted/center-convex relic, and a non-detection
case. Columns show three orthogonal projections (x̂, ŷ, ẑ), highlighting strong
orientation effects. All panels use a 5000 kpc field of view binned on a 200× 200

grid. All radio maps are intrinsic, constructed based on the data of Lee et al.
[91].
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The fixed three–projection layout highlights the strong role of orientation and
triaxiality in shaping the appearance of shock–related structures [91]. Across all
rows, the three orthogonal projections make clear that the same 3D shock geometry
can project to markedly different 2D morphologies: a double system may appear
single, a thin ridges can fragment into multiple layers and so on.

At a fixed observing frequency (for example, ν = 1.4 GHz), radio relics become
fainter with time after the shock passes. This happens because both the popula-
tion of relativistic electrons and the magnetic field, which together produce the
synchrotron emission, evolve in a way that lowers the emissivity jν. Fresh elec-
trons are only injected at the moving shock front; once the shock has passed, the
electrons left behind simply drift downstream and lose energy [64, 179].

Their energy losses are mainly due to synchrotron radiation and inverse Comp-
ton scattering off the CMB, which act more strongly on high-energy electrons
(γ̇ = −Ccoolγ

2 with Ccool given by Equation 35). As a result, the electron spectrum
develops a break that shifts to lower energies with time. The frequency correspond-
ing to this spectral break also decreases with time [75, 76].

νb(t) ∝
B(

B2 +B2
CMB

)2 t−2,

For frequencies ν > νb, the radio spectrum steepens and the emissivity drops
rapidly, a behavior known as aging [19].

In parallel, adiabatic expansion of the post–shock plasma lowers particle ener-
gies and nCRe, while the initially compressed/amplified magnetic field relaxes,
weakening the B1+α leverage in jν ∝ nCRe B

1+α ν−α [19, 64].
As merger shocks travel outward into the lower-density cluster outskirts, their

kinetic energy flux decreases and their ability to inject new relativistic electrons
becomes less efficient. This is because the Mach number (M) tends to be smaller
and the energy dissipated per unit area is reduced, leading to a weaker supply
of freshly accelerated particles. At the same time, geometric effects reduce the
observed brightness: the emitting layer is very thin, and as the shock front curves
and moves beyond the field of view, the line-of-sight depth through this layer
becomes smaller [75].

Combining these effects, e.g., radiative aging (losses scaling as ∝ γ2), adiabatic
and magnetic field evolution, reduced injection, and geometric dilution, radio
relics fade steadily at a fixed observing frequency νobs. The dimming is even faster
at higher redshift, since the energy density of the CMB increases as (1 + z)4 as
expressed in equation 35 [76, 179].

In Figure 41 we follow the same four systems (in x̂ projection) across cosmic
time (z = 0, 0.2, 0.5, and 1), emphasizing the transient nature of merger shocks
and their radio signatures. It can be seen that, bright relic-like arcs appear after
pericenter, when the merger-driven shocks are launched, but they gradually fade
and become less distinct as the system evolves. Both the peak surface brightness
and the sharpness of the arcs decrease with time, reflecting the radiative ageing
of shock-accelerated electrons: once the shock front has passed, synchrotron and
inverse Compton losses (Eq. 35) shift the spectral break to lower frequencies, re-
ducing the emissivity at 1.4 GHz. The fading is therefore a genuine evolutionary
effect, rather than a change in viewing geometry.
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Figure 41: Evolution of the radio surface brightness (along the x̂-axis) for the same four
halos shown in Figure 40, at redshifts z = 0, 0.2, 0.5, and 1. Merger-driven radio
features are transient: they tend to brighten following first pericenter, evolve in
shape as shocks propagate through the ICM, and may fade on Gyr timescales as
accelerated electrons cool and shocks weaken. Projection effects can transform
elongated relics into apparently halo-like morphologies when viewed along the
collision axis.
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18.1 data preprocessing (radio)

For this thesis, similar to X-ray maps we adopt the intrinsic radio surface-brightness
maps published by Lee et al. [91] for the same 352 primary zoom halos of TNG-
Cluster as used in part v. We consider 3 orthogonal projections across (x̂, ŷ, ẑ) at
eight snapshots (99, 91, 84, 78, 72, 67, 59, 50) spanning 0 ⩽ z ⩽ 1. Since clusters
are oriented randomly in the simulation box, this means that viewing angles of
the maps are random. As seen in chapter 17, due to the triaxial nature of radio
maps, the three projections provide independent, and statistically distinct viewing
angles. This yields a total of 352× 8× 3 = 8448 maps, which will be the input to
the contrastive learning pipeline.

To enable a direct comparison with the X-ray maps in part v and for using in
Part vii, we adopt the same projection setup for the radio: a square field of view of
4R200c (i.e., ±2R200c from the cluster center). We render maps at a pixel resolution
of 200× 200.

For creating the normalized fits files, empty bins are floored prior to taking log-
arithms to avoid infinity values. Surface brightness is obtained by dividing by the
pixel area so that the final units correspond to erg s−1 Hz−1 kpc−2. We adopt a
fixed global intensity stretch for all maps: we compute log10 of the surface bright-
ness and clip to [21, 28] (in dex). For normalizing the fits file for the next steps, all
the values are linearly mapped to [0, 1] and saved as FITS images.

The rest of the preprocessing and augmentations is similar to what was ex-
plained in Part v.

18.2 representation extraction and postprocessing (radio)

We repeat the representation–space analysis for the radio maps in Figure 42, using
the same pipeline as in Section 14.5. In brief, after training we use the SimCLR radio
encoder (projection head discarded) to extract 512–dimensional representations for
each test FITS image, applying the identical preprocessing used for radio maps
(see Section 18.1). For visualization, the resulting 2D coordinates are placed on a
G×G grid (here G = 20) using the same normalization–and–assignment procedure
described in Section 14.5.

The learned representation space exhibits the same desirable structure observed
for X–ray: clear neighborhoods, smooth transitions, and coherent large–scale trends.
Tiles with extended, diffuse synchrotron emission (e.g., halo/relic–like morpholo-
gies) tend to cluster together, mainly on the outer (right) border (prior to the tail
(upper 2/3)) of the UMAP. Whereas more radio quiet or weak–emission systems
(relaxed–like) occupy the inner (left) border of the UMAP. Across the grid, as we
go from right to left, we see gradual variations; from radio relics, to weak radio
halo emission to no radio emission, and the same holds for going from upper left
to lower right, which gradually decreases the strength of radio emissivity.

157



158 contrastive learning on radio maps

21

22

23

24

25

26

27

28

log10(em
issivity [erg s

1 Hz
1 kpc

2])

Figure 42: Grid visualization of the UMAP of the SimCLR learned radio representation. As
in Figure 27, morphologically similar systems populate neighboring cells, indi-
cating a smooth, astrophysically meaningful organization of the representation.

To further probe neighborhood consistency, we perform a nearest–neighbor (NN)
analysis directly in the 512–D representation (as in Section 14.5). For a set of ran-
domly chosen anchors we retrieve their k nearest neighbors (Euclidean distance
on ℓ2–normalized vectors; monotonically related to cosine similarity) and display
them side–by–side. Because this operates in the original feature space (not the
UMAP plane), it tests the semantic organization learned by the encoder without
the distortions of nonlinear projection. As can be seen in Figure 43, the neighbors
almost have the same radio emissivity pattern; radio halos, and radio relics, and
clusters without any radio emissivity are grouped together. This indicates that the
representation space captures astrophysically meaningful structure and that the
radio representation space is locally smooth and well organized.

Following the same pipeline as in Section 14.5, we probe the radio representa-
tion space by coloring the 2D UMAP with astrophysical labels using hexagonal
bin–averages. This label–free training / label–aware probing assesses whether the
radio encoder organizes clusters coherently with respect to independent diagnos-
tics.
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These properties are the observable and unobservable (merger) properties from
Table 4 and 5 in Figures, 44, and 45, and from table 6 in Figures 46 and 47. Over-
all, the radio UMAP overlays display smooth, label–correlated gradients for most
of the observables and (last/next) merger parameters, mirroring (and in places
sharpening),the structure seen with radio. This corroborates that the radio encoder
learns astrophysically meaningful features that the cINN can exploit downstream.
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Figure 43: Nearest–neighbor retrieval in the radio embedding. Each row shows one anchor
map (far left) and its k = 4 nearest neighbors in representation space. Neighbors
share salient radio morphology (extent, elongation, texture), corroborating the
semantic coherence of the learned representation.
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Figure 44: Radio 2D representation (UMAP) colored by the binned mean of halo/BCG ob-
servables (Table 4). Smooth, coherent gradients indicate that the self-supervised
representation encodes global halo–BCG scaling relations despite label–free
training.
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Figure 45: Radio representation (UMAP) colored by the binned mean of ICM core and dy-
namical diagnostics (Table 5). Clear trends show that the representation space
captures thermodynamical and dynamical state information.
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Figure 46: Radio representation (UMAP) colored by the binned mean of last–merger pa-
rameters (Table 6). Pronounced, ordered gradients suggest that radio morphol-
ogy retains a clear imprint of recent merger activity relevant for downstream
inference.
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Figure 47: Radio representation (UMAP) colored by the binned mean of next–merger pa-
rameters (Table 6). The presence of smooth structures indicates that the repre-
sentation also carries information predictive of upcoming merger events.





19
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19.1 posterior distributions with radio conditioning

We repeat the visualization of conditional posteriors p(x | c) for a subset of test
clusters, now conditioning on the learned radio representation space c (see section
18.2) for radio maps. From the saved test indices we randomly select nrows = 15

clusters; for each condition ci we draw nsam = 1000 posterior samples {x(s)i }
nsam
s=1

via the inverse flow (Section 15.3), map samples to physical units, and arrange one
target per column. Rows correspond to distinct galaxy clusters (annotated on the
left with HaloID and redshift z); columns correspond to merger parameters (section
9.2). Within each panel we overlay the same four elements defined in Section 11.3: a
gray prior KDE (test-set marginal for context), a blue posterior KDE for the selected
cluster, a gold MAP vertical line, and a red ground-truth line. As before, prior and
posterior KDEs are peak-normalized (only shapes and locations are comparable),
and nsam controls Monte Carlo smoothness (we use nsam = 1000).

Qualitatively, the radio representation space yield posterior behavior match-
ing the X-ray case (Figure 33) but performing better; the blue posteriors contract
strongly around the red ground truths across all targets. The contraction is visi-
bly tighter and stronger in radio representation conditioning compared to X-ray,
which means that the radio representation space, provided stronger conditioning,
or in other words, more organized unobservable patterns. In addition to this, MAP
markers (gold) typically coincide with the truths (accurate), and posterior widths
are uniformly narrow (precise), indicating that the learned representation space
of radio maps (section 18.2) provides a rich, discriminative conditioning signal for
the cINN.

19.2 prediction performance of the cinn conditioned on the ra-
dio maps’ representation space

We repeat the test–set evaluation of sections 12.2 and 16.2, now conditioning on
the learned radio representation space (18). Figures 49 and 50 are constructed iden-
tically to their X-ray counterparts (section 16.2): for each target xd we bin the
ground–truth axis into B = 20 equal–width bins and, for every test object in a bin,
draw nsam = 500 posterior samples with the inverse flow (Section 15.3). Stacking
these into the same binning yields a 20×20 heatmap in value space with the white
diagonal y = x; black curves show the posterior median (solid) and 10–90% quan-
tiles (dashed). Figure 50 shows MAP vs. truth with bin–wise medians (solid black
line) and 10–90% envelopes(dashed black lines), and the corresponding relative
errors ∆ = 100(MAP − truth)/truth.

Relative to X-ray conditioning (Section 16.2), the radio representation provides a
stronger conditioning signal: posterior distributions (Figure 49) concentrate more
tightly along the diagonal, with the median lines following the identity lines
strongly with very small regression to the mean. MAP medians very closely fol-

165
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Figure 48: Posteriors conditioned on Radio maps’ learned representation space for 15 ran-
domly selected test galaxy clusters (rows) out of 620 across all target merger
properties (columns. Gray: prior KDE over the test split; blue: posterior KDE;
gold: MAP (vertical line); red: ground truth (vertical line). Construction mirrors
the X-ray case in figure 33.
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Figure 49: Posterior versus ground truth per target for radio representation conditioning
across all 620 test clusters. Construction as in figures 34 and 18 with B = 20

and nsam = 500. The white diagonal shows y = x. Black solid: posterior median;
black dashed: 10–90% quantiles. Compared to X-ray (Figure 34), posteriors are
tighter, across all merger parameters. The calibration is also performing very
strong (and better than X-ray representation conditioned) tracking y = x even
more closely with a very negligible regression to the mean.
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Figure 50: Per merger parameter MAP accuracy (top) and relative error (bottom) under
radio representation conditioning across all 620 test clusters. Top: MAP vs. truth
with bin–wise black solid medians and black dashed 10–90% envelopes; the
pink diagonal indicates y = x (perfect agreement). Bottom: relative MAP error
∆ = 100(MAP − Truth)/truth with the same line style, with pink horizontal
line marking ∆ = 0. Medians lie near the identity line with mainly small error
ranges (except merger mass ratio) around ∆ = 0 (bottom) with very tight 10–90%
envelopes. All error ranges are smaller than in the X-ray case (Figure 35).

lows y = x for all targets, with very small errors across all merger parameters ex-
cept lower mass ratios. A very mild, uniform shrinkage (regression–to–the–mean)
is still visible as a slight bending toward the global modal scales, but with reduced
amplitude compared to X-ray representation conditioning across all targets.

• Collision Time: Posteriors accumulate strongly with very tight percentile lines
around the y = x line with its median line following it very nicely with
very small bending due to the regression to the mean. MAP estimations are
also performing very well; MAPS are all around the identity line with very
small scatter, and MAP errors mostly in the range [−5%, 10%]. The relatively
larger percentage spread (vs. other targets) remains consistent with discrete
snapshot timing, where percentage errors are less forgiving despite small ab-
solute offsets. Compared to X-ray representation conditioning, the posteriors
are significantly tighter, with very little scatter of MAP estimation, and lower
relative error (∼ 75% improvement).
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• Collision Velocity: Similar to Collision Time, calibration is very strong with
small envelopes. Similarly, MAP estimates are also performing very strong
with medians essentially on the identity, with MAP errors ⩽ ±1%. We still
have a very slight mode–centered shrinkage as in other targets/condition-
ing. Compared to X-ray representation conditioning the posteriors are more
tighter especially in both lower and higher velocities, with significantly smaller
scatter of MAP estimation and relative errors (∼ 80% improvement in ex-
tremes).

• Main Cluster M500c: Posterior distribution is again compact with strong cali-
bration, and tight quantile bands. MAP estimations also are along the y = x

line with small scatter and very small relative error of ⩽ ±0.5%. Regression to
the mean also exist similar to rest of the merger parameters. Compared to X-
ray conditioning performance, the posteriors are distributed tighter, however,
still less strong than Collision Time, Pericenter Distance and Merger Mass Ra-
tio. The MAP estimation performance has also significantly less scatter with
lower relative error (∼ 75% improvement in extremes).

• Subcluster Mass: Posteriors accumulate over the identity line with median line
and percentile lined following the identity line closely. MAP estimations are
around the y = x with very small scatter, tight bands an MAP errors ⩽ ±0.5%.
A minimal curvature due to regression to the mean can be seen. Compared to
cINN conditioned on X-ray representation, posterior distribution are tighter
(again not as strong as the Collision Time, Merger Mass Ratio and Pericenter
Distance), but its quantile lines are much more concentrated. Also the MAP
estimations, have less scatter, and lower relative error (∼ 75% improvement
in extremes).

• Merger Mass Ratio: Very tight posterior distribution with well-behaving me-
dian and small bands. still the most challenging due to its bounded/frac-
tional nature; with MAP estimation’s relative errors inflating at small ratios
(denominator effect), but median trends follow y = x closely over the bulk of
support. Radio representation conditioning provides a significantly less scat-
tered Posterior and MAP estimations distributions, with still high but lower
relative error at small ratios (∼ 87% improvement in extremes).

• Pericenter Distance: Strong calibration with tight posterior distribution and
quantiles. MAP estimation performance is also very strong with MAPS con-
centrated around the identity line and relative errors ∼ ±3%. Compared to
X-ray, the calibration is stronger, posteriors and its quantiles are more tightly
concentrated around y = x. There is also less scatter is MAP estimations with
lower relative error (∼ 75% improvement in extremes).

In summary, radio representation conditioning yields tight, diagonal–aligned
posteriors and uniformly small quantile bands, significantly stronger performance
than X-ray conditioning across all targets, with particularly evident tighter pos-
teriors for collision time, Merger Mass Ratio, and Pericenter Distance. The MAP
estimations also consistently lie close to the identity lines with very small scat-
ter, and small relative errors (except Merger Mass Ratio) with improvements over
the X-ray representation conditioning. case particularly evident for collision time
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and Pericenter Distance in posterior distribution, and lower MAP error across all
merger parameters.

19.3 cross correlations : radio conditioned inference

In addition to the scalar and X-ray conditioning explored in previous parts, we
now assess whether the cINN trained on radio maps is able to learn the cross cor-
relations among merger parameters. As in Section 12.3, we visualize all pairwise
relations between the target merger parameter in a corner plot. For each test object,
we draw nsam = 200 posterior samples, and plot the pooled posterior realizations
(blue), MAP estimates (gold), and ground truths (red). On the diagonal, we include
the one-dimensional KDEs of the corresponding marginals for posterior, MAP, and
truth.

The interpretation of this visualization follows the same principles as in the
scalar and X-ray cases. Alignment between gold and red clouds indicates accurate
MAP recovery, while elongated blue posterior structures aligned with the red loci
indicate that the model has captured the correct correlations between parameters.
Systematic displacements of gold relative to red point to bias, and dispersed or
multi-clumped blue structures reflect residual ambiguity or multi-modality in p(x |

c).
The correlation structure evident in Figure 51 is consistent with the expectations

summarized in Section 12.3. Posterior samples, MAP estimates, and ground-truth
values collectively reproduce the qualitative trends anticipated from ΛCDM scal-
ing arguments. Compared to the scalar and X-ray cases, the posterior distributions
are notably less scattered, indicating that the radio-conditioned inference provides
tighter constraints on the merger parameters. Moreover, the diagonal KDEs of pos-
terior, MAP, and ground truth are nearly identical, highlighting the high fidelity
of the recovered marginal distributions. In particular, the model recovers not only
the correct one-dimensional marginals but also the underlying cross-target corre-
lations, demonstrating that it has learned the physical connections between syn-
chrotron radio observables and the dynamical state of cluster mergers.
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Figure 51: Corner plot across all target merger properties for radio conditioned inference
across the 620 test clusters. Diagonal: marginal KDEs of posterior (blue), MAP
distribution (gold), and ground truth (red). Lower triangle: pooled posterior
samples (blue), MAPs (gold), and truths (red) for each test object. The figure
demonstrates that the cINN trained on radio maps captures both the marginal
distributions and the cross-target correlations among merger parameters.
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19.4 next–merger inference with radio representation condition-
ing

We repeat the radio–conditioned analysis for the next merger (future event), com-
bining the per–object posterior grids and population–level assessments in a single
section. For each selected test cluster we draw nsam = 1000 samples from p(x | c)
via the inverse flow (Section 11.3) and visualize one target per column as in the
last–merger chapter.

Figure 52 shows 15 randomly chosen test clusters (rows) with prior (gray), pos-
terior (blue), MAP (gold), and truth (red) overlays. As in the last–merger radio
case (Figure 48), posteriors remain sharply concentrated around the truths across
all targets; the only systematic change is a mild broadening of the blue ridges for
timing–related quantities (most notably collision time, and slightly for Pericenter
Distance and Merger Mass Ratio), consistent with the increased uncertainty of for-
ward prediction in time. MAP estimate markers continue to coincide with the red
truths in the majority of panels.

Figures 53 and 54 are constructed identically to their last–merger counterparts:
we use B = 20 truth bins and nsam = 500 posterior draws per object, stack sam-
ples into the same binning to form a 20×20 heatmap in value space, and overlay
the white identity y = x, the posterior median (solid black), and 10–90% bands
(dashed). The histograms remain narrow and closely aligned with y = x; median
curves hug the diagonal, and MAP medians and relative–error envelopes stay tight.
The radio-conditioned last merger inference (19.1), yields tighter posteriors across
most target, especially evident in Collision Time, Merger Mass Ratio and Pericen-
ter Distance. The MAP estimation errors remain mainly similar to the last merger,
except of having a lower error in earlier mergers which is consistent with what we
would expect for predicting features for events in earlier universe.

Numerically, the next–merger errors are comparable to the last–merger radio case,
with at most slight broadening for posterior distributions:

• Collision Time: Perfomance in posterior distribution and MAP estimation is
similar to the last merger, except that the next merger posteriors and its
quantile bands are modestly wider than in the last–merger, but still tighter
than X–ray.

• Collision Velocity: Nearly identical calibration and MAP estimation perfor-
mance and errors as the last merger csae, with slightly wider posteriors.

• Main Cluster M500c: similar calibration and MAP estimation performance to
last merger.

• Subcluster Mass: Calibration remains strong with MAP estimation perfor-
mance comparable to the last merger.

• Merger Mass Ratio: remains the most sensitive (bounded/fractional); relative
errors inflate at small ratios, but similar performance ot last merger; the MAP
and posterior median follows y = x closely with slightly wider posterior and
quantile bands.

• Pericenter Distance: Calibration and MAP estimation performance is similar
to the last merger with slightly wider posterior compared to the last merger.
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In summary, radio representation conditioning sustains tight, diagonal–aligned
posteriors and uniformly small MAP errors for the next merger, mirroring the
last–merger performance with only a small, physically expected slight widening
for all parameters, more evident in Collision Time, Merger Mass Ratio, and Peri-
center Distance. The radio advantage over X–ray persists across all targets, in the
next merger, as well as the last merger predictions.

19.5 discussion

Conditioning on radio representation space yields the tightest posteriors and the
smallest MAP scatter across all targets (Figures 49, 50). Typical MAP error ranges
are narrower: Collision Time (∼ [−5, 10]%), Collision Velocity (⩽ ±1%), Main Clus-
ter M500c and Subcluster Mass (⩽ ±0.5%), Pericenter Distance (∼ ±3%); Mass Ra-
tio still broadens at small values but improves overall. The regression to the mean,
still exist, however, it is very negligible and less noticeable than conditioning on
X-ray representation. Posterior median follow along the identity line with negligi-
ble offset, and tight envelopes which is an improvement from X-ray conditioning.
Also as can be seen in Figure 48, posteriors are contracted significantly stronger
relative to the prior. This improved performance, can be explained by very smooth
transitions of merger parameters in the UMAP in Figure 46, which could help the
cINN by giving stronger conditioning signals.

what the radio representation space captures . The radio encoder or-
ganizes maps primarily by shock–driven morphology: presence/absence of relics
or halos, bilateral symmetry of double relics, relic curvature and thickness, pro-
jected separation from the cluster center, and large–scale anisotropy. These features
respond to recent pericenter passage, shock Mach number/speed, and viewing
angle, so color–gradients on UMAP for collision time, velocity, and pericenter dis-
tance tend to be crisp. As with X-ray, UMAP is a nonlinear 2D projection of a 512-D
geometry; smooth bands in 2D are supportive and can be a more informative 512-
D conditioner.

why radio excels on kinematics . Synchrotron brightness is concentrated
in thin, edge–brightened shock sheets. After pericenter, outward-moving shocks
produce elongated, high-contrast relics whose projected radius, curvature, and bi-
lateral symmetry can encode time since passage and instantaneous shock speed
Lee et al. [92]. This tight visual coupling geometry and merger timing/velocity
could translates into narrower posteriors and smaller MAP scatter for those tar-
gets when conditioning on the radio representation space.

highly organized representation pace → informative neighborhoods .
The SimCLR representation space of radio maps, Figures 46 and 42, shows smooth,
monotonic gradients for merger labels across all merger parameters (for Merger
Mass Ratio it is not as strong). This indicates that shock-driven morphology (e.g.,
relic curvature and thickness, bilateral symmetry, etc.) varies coherently with time
since pericenter, collision velocity, pericenter distance, and indirectly mass compo-
nents. Although UMAP is a 2D projection of a 512-D space, the consistent banding
and locality suggest that the full geometry is also strongly predictive.
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joint learning in the cinn. The cINN still models the joint density p(x |

cradio). Inside each coupling block, spline parameters for a subset of targets are
predicted from the remaining targets and the cradio. Thus, covariances such as time
and velocity of collision, pericenter distance, and mass–kinematics links are en-
coded explicitly as was shown in Figure 51. Even when a single property (e.g,
Merger Mass Ratio) shows a less uniform UMAP gradient in some regions, strong
organization of the rest of the parameters (e.g, velocity and masses) in the repre-
sentation space allows the flow to sharpen p(dperi | c) via cross–target structure.

regression to the mean vs . calibration. Shrinkage of MAP bin medi-
ans toward modal scales is weaker than in the X-ray case, consistent with stronger
cues. While it is mild, it still can indicate that the tighter radio posteriors are not
over-confident: improved sharpness coincides with maintained calibration.

representation space vs . radio scalars . Hand-crafted relic descriptors
(length, curvature, separation, polarization fraction) capture only a slice of the
morphology and are fragile to apertures, thresholds, and beam. Conditioning the
cINN on such scalars could produces broader, less well-calibrated posteriors than
conditioning on the learned radio representation. The representation space retains
topology (single vs. double relics), bilateral symmetry, thickness gradients, and
halo–relic coexistence that scalars miss, explaining its downstream advantage.

role of the mixture-of-experts (moe). Routing in representation space
naturally could separates regimes such as (i) double-relic systems, (ii) single-relic
plus halo, (iii) halo-dominated/weak-shock, and (iv) radio-quiet morphologies.
Expert-local flows reduce averaging across these heterogeneous regimes, yielding
sharper, better-calibrated posteriors and preserving potential multi-modality that
a single global flow would blur.

intrinsic maps , augmentation, and radio-specific caveats . Our in-
puts are intrinsic (no beam convolution, uv-coverage, correlated noise, or Faraday
effects). To promote robustness of the learned representation, we apply a physics-
aware SimCLR augmentation policy (Section 14.2): random flips and rotations
(to remove arbitrary sky orientation), affine zoom and translations (to desensitize
centering/scale), Gaussian blur with σ ∈ [10−3, 1.0] (to mimic beam smearing),
and additive Gaussian noise with SNR ∼ U(4, 8) (to emulate depth variations).
These augmentations help the encoder ignore nuisances and focus on merger
morphology, which we see as stronger prior–posterior contraction and cleaner
posterior–vs–truth ridges. That said, they do not substitute for radio-specific in-
strument effects or plasma microphysics: our emissivity prescription (shock-based
injection, thin-sheet emission, no explicit downstream re-acceleration/diffusion)
and simulated B-fields can emphasize thin, high-contrast rims; in observations,
uv-sampling, beam convolution, spectral ageing, depolarization, and RFI/mask-
ing will broaden and reshape features, and inverse-Compton losses scale as (1+

z)2. Hence, while augmentation improves robustness, instrument-aware forward
modeling and sim-to-real validation/fine-tuning remain essential before deploying
these radio-conditioned posteriors on survey data.
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next merger . Radio conditioning inference sustains its best overall perfor-
mance for forecasting; posteriors remain narrow and diagonal across targets, MAP
medians track the identity line, and error envelopes are nearly identical to the last
merger case, with only a mild broadening mainly for time of collision. Calibration
patterns and small MAP scatters are preserved, indicating that the radio morphol-
ogy, as can be seen in Figure 47, continues to to anchor merger parameters when
predicting the next merger event.
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Figure 52: Next merger posteriors conditioned on the radio representation (15 randomly
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C O N T R A S T I V E L E A R N I N G O N PA I R E D X - R AY – R A D I O M A P S

This chapter extends the single-modality contrastive pipeline of Chapter 14 to
paired galaxy-cluster maps, where each training example comprises a co-registered
X-ray map and a radio map of the same halo, snapshot, and line-of-sight. To avoid
repetition, we retain the notation, optimization details, and loss formulation intro-
duced earlier (Sections 14.3 and 14.2), and focus here on the changes specific to
multi-channel inputs.

We (i) construct filename-matched X-ray–radio pairs, (ii) harmonize their spatial
resolution without hallucinating detail, (iii) stack them into a two-channel tensor
compatible with the SimCLR framework, and (iv) apply channel-consistent aug-
mentations that preserve cross-modal correspondence. The resulting representa-
tions are evaluated with the same postprocessing tools (nearest-neighbor retrieval,
UMAP visualization) described in Chapter 14.

20.1 data preprocessing and augmentation (x-ray–radio)

Let A and B denote two FITS roots (X-ray and radio, respectively). We first form
pairs using their names, making sure that the radio and X-ray maps for each galaxy
cluster, at a certain snapshot and projection are paired together. Individually, X-ray
maps (Section 14.1) and radio maps (Section 18.1) are pre-normalized to [0, 1] by
construction.

However, the problem is that X-ray and radio maps have different grids: X-ray
maps are 2000 × 2000, radio maps are 200 × 200. To form a two-channel tensor
on a common grid without inventing high-frequency content, we need to resize
them. Since the radio maps have a lower resolution, we downsample the X-ray map
from 2000× 2000 to 200× 200. Downsampling uses area interpolation (anti-aliased
average pooling), which best preserves photometric scale.

Let X ∈ [0, 1]HX×WX and R ∈ [0, 1]HR×WR be the arrays. After resizing, we have
X̃, R̃ ∈ [0, 1]HR×WR on a shared grid, and we stack them as a two-channel tensor

x =
[
X̃, R̃

]
∈ [0, 1]2×HR×WR .

We follow the same augmentations of Section 14.2, but adapt it to paired inputs.
Let ϕ(·;ω) be an augmentation with random parameters ω. For SimCLR we draw
two independent sets ω1,ω2 and form two correlated views:

v(1) = ϕ
(
x;ω1

)
, v(2) = ϕ

(
x;ω2

)
.

After applying the same list of augmentations from section 14.2, both views
are provided to the encoder. As in the single-modality case, all augmentations are
implemented via a MultiViewTransform wrapper from lightly.ai [178] that returns
(v(1), v(2)).

179
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20.2 simclr with two-channel inputs

We use the same SimCLR formulation as Section 14.3. In brief, for a batch of N

paired images, two random augmentations produce 2N views. Each view is en-
coded by a convolutional backbone, projected by an MLP head, and optimized
with the NT-Xent contrastive objective (Eq. 31).

For the backbone, we retain a ResNet-18 encoder pre-trained on ImageNet but
replace the first convolution with a two-channel. For this purpose, weights are
initialized by averaging the pre-trained RGB kernel across the color dimension
and repeating along the new channel axis; all subsequent layers are unchanged.
The projection head is a 2-layer MLP mapping the 512-dimensional pooled features
to a 128-dimensional contrastive space [29, 178].

For training, we use SGD with momentum 0.9, weight decay 5× 10−4, cosine
annealing from an initial learning rate of 0.06 over 100 epochs. The procedure is
similar to what was explained in Chapter 14.

20.3 embedding extraction and postprocessing (joint x–ray + ra-
dio)

At test time we discard the projection head and use the encoder as a frozen feature
extractor, exactly as in Chapter 14. Each paired input is preprocessed by the same
resize and standardization policy as in training, then passed through the backbone
and globally pooled to obtain a 512-dimensional descriptor.

We construct a joint representation by fusing the modality–specific encoders in-
troduced in Sections 14.5 (X–ray) and 18.2 (radio). Concretely, we extract 512–D
embeddings from each trained SimCLR encoder, apply the same preprocessing
and ℓ2 normalization used in the single–modality pipelines. For visualization we
project the joint codes to two dimensions with UMAP and place the coordinates
on a G×G grid (we use G = 15), following the exact grid–assignment procedure
already described in section 14.5.

For visualizing the joint FITS tiles, we render the same FITS images used in
Parts v (X–ray) and vi (radio). Because the native image sizes differ (X–ray 2000×2000

vs. radio 200×200), we first downsample X–ray to the radio grid. Following that,
we build an RGB composite with R=radio, B=X–ray, G=0, and convert to uint8. In
this encoding, radio-only emission appears red, X–ray-only emission appears blue,
and co-spatial structures appear magenta.

The joint UMAP exhibits the desirable traits seen in both X–ray (Figure 27) and
radio (Figure 42); smooth local neighborhoods and coherent global trends, while
adding complementary structure. If the UMAP is divided into three bands from
top left to bottom right; the right band is mainly consisted of cuspy X-ray maps,
with little to no radio emission, the middle band, is mainly consisted of merging
clusters with clusters having stronger radio emission on top and weaker on the
bottom, and the final band, are the clusters with flat core X-ray profile, again with
the top part, exhibiting radio relics, and lower parts having mainly weaker radio
emission.

Nearest–neighbor panels (queried directly in the joint representation space, not
in UMAP) confirm semantic consistency beyond 2D projection: X-ray profiles re-
laxed or merging with strong radio relics/halo grouped together; and the same
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Figure 55: Grid visualization of the joint (X–ray + radio) representation (UMAP to 2D,
G = 15). Each tile is the RGB composite (R=radio, B=X–ray, G=0) corresponding
to a projected point from the 512-D joint representation space.
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Figure 56: Nearest–neighbor retrieval in the joint representation. Each row shows one an-
chor (far left) and its k = 4 nearest neighbors queried in the 512 dimensional
representation space. Each image is the RGB composite (R=radio, B=X–ray, G=0)
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for similar x-ray profiles with weak or no radio emission. This mirrors the sin-
gle–modality findings while tightening neighborhoods through complementary
cues.

Across grid views, nearest–neighbor queries, and label-aware hexbin overlays,
the joint (X–ray + radio) representation is locally smooth, globally structured,
and label-correlated. The joint representation integrates complementary thermal
and non-thermal cues, yielding coherent neighborhoods and crisp gradients that
motivate its use as a strong conditioner for downstream cINN inference in the
joint–conditioning experiments.
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Figure 57: Joint representation (UMAP) colored by binned means of halo/BCG observables
(Table 4). Smooth, monotonic gradients indicate that the representation encodes
global halo relations despite label-free training.
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Figure 58: UMAP projection of joint (X–ray + radio) representation space, colored by
binned mean values of ICM core and dynamical properties (Table 5). Clear
trends show that the representation space captures thermodynamical and dy-
namical state information.
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Figure 59: UMAP projection of joint (X–ray + radio) representation space, colored by the
binned mean values of last–merger parameters (Table 6). Strong coherent gradi-
ents suggest that the representation retains signatures of recent merger activity
in the cluster morphologies.
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Figure 60: UMAP projection of joint (X–ray + radio) representation space, colored by
the binned mean values of next–merger parameters (Table 6). The presence of
smooth structures indicates that the representation space also encodes informa-
tion predictive of upcoming merger events.



21
R E S U LT S A N D D I S C U S S I O N S ( J O I N T X - R AY A N D R A D I O
C O N D I T I O N I N G )

21.1 posterior distributions with joint x-ray and radio represen-
tation conditioning

We now condition the cINN on the joint representation space derived from both X-
ray and radio maps, rather than on either modality alone. As before, we randomly
select nrows = 15 test clusters, and for each embedding (representation) ci we draw
nsam = 1000 posterior samples {x(s)i }

nsam
s=1 via the inverse flow (Section 11.3). Figure

61 shows the resulting posterior grids: gray test-set prior KDEs, blue posterior
KDEs, gold MAP estimate, and red ground-truth vertical lines.

Relative to the unimodal cases, the joint conditioning produces posterior KDEs
that are narrower than in the X-ray-only case, but still noticeably broader than un-
der radio conditioning. However, similar to both cases of X-ray and Radio, the gold
MAP lines, are close to the red-ground truth derived from TNG-Cluster. In sum-
mary, joint conditioning was not less/more precise and accurate as the radio/X-ray
only conditioning; or in other words, having an intermediate performance.

21.2 prediction performance of the cinn conditioned on joint x-
ray and radio representations

Figures 62 and 63 summarize posterior calibration and MAP performance across
the test set using the same construction as before (B = 20, nsam = 500). The 2D
posterior-truth histograms show relatively narrow ridges aligned with the identity
line; medians track y = x with mild regression-to-the-mean that is weaker than in
the X-ray case but stronger than in radio. MAP estimates lie close to the identity
for most parameters, reducing scatter compared to X-ray-only conditioning but
not achieving the compactness of radio conditioning. The regression to the mean
problem is still present, similar to both X-ray and Radio conditioned cINN.

Calibration is slightly better than X-ray conditioning, with median posterior
lines more closely following the ground truth, but does not reach the near-perfect
alignment of radio representation space. The quantile lines are also tighter than X-
ray, and wider compared to the radio conditioning. MAP estimates remain consis-
tently closer to the truth than in the X-ray case, though with somewhat larger scat-
ter than for radio-only conditioning. Following this, we discuss the performance
per merger parameter:

• Collision Time: Posterior calibration is improved compared to X-ray condition-
ing, though still broader than radio. MAP errors are within ±10%, showing
moderate improvement over X-ray but weaker precision than radio. The pos-
terior distributions are about as tight as those from X-ray, though broader
than radio; their calibration (posterior mean) is only slightly improved over
X-ray but remains worse than radio. For the MAP distribution, the scatter is
smaller than X-ray yet wider than radio.

187
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Figure 61: Joint X-ray + Radio representation conditioned posterior grids for 15 randomly
selected clusters from 620 test clusters (rows) across all target merger properties
(columns). Gray: prior KDE; blue: posterior KDE; gold: MAP; red: ground truth.
Posterior contraction is stronger than X-ray conditioning alone but weaker than
radio-only conditioning.
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• Collision Velocity: Posterior distributions show a similar level of tightness com-
pared to X-ray but are less compact than radio. Their calibration is marginally
better than X-ray, though still weaker than radio. The MAP distributions re-
veal scatter that lies between X-ray (larger) and radio (smaller). MAP errors
are around ±2%, which makes the MAP estimation Performance is interme-
diate between the X-ray (±5%) and radio (±1%) cases. Similar to Collision
Time, the variability in MAPS, along with its relative errors, is smaller than
in X-ray but greater than in radio-based representations.

• Main Cluster M500c: The tightness of the posterior distributions matches that
of X-ray but is exceeded by the more concentrated radio case. Calibration
is slightly superior to X-ray but inferior to radio. In terms of MAPs, the
scatter is reduced relative to X-ray, yet remains broader than radio. Relative
MAP errors ⩽ 1%, showing slightly better performance than X-ray-only (∼
±2%) but looser than radio (∼ ±0.5%). In MAPS, the scatter and relative
error values fall below those of X-ray yet remain above those observed in
radio-conditioned data.

• Subcluster Mass: We observe that the posterior distributions are as narrow as
X-ray but not as narrow as radio. Their calibration is marginally improved
compared with X-ray but does not reach the level of radio. For the MAP
distributions, the scatter is below that of X-ray but greater than radio. The
MAP errors around ±1%. This is markedly better than X-ray conditioning
(∼ ±2%), though slightly less precise than radio-only (∼ ±0.5%). Compared
to X-ray, MAPS shows reduced scatter and relative errors, though these are
still larger than what is seen in radio representations.

• Merger Mass Ratio: The posterior distributions maintain a comparable spread
to X-ray, though they are wider than those from radio. Their calibration is just
above X-ray in quality, while still below radio. The MAP scatter is positioned
between X-ray (larger) and radio (smaller). As with all conditionings, this
remains the most difficult parameter, particularly at low ratios. Joint condi-
tioning reduces scatter compared to X-ray, but the intrinsic bounded nature
of the ratio maintains relatively high fractional errors. MAPS exhibits less
scatter and lower relative errors than X-ray, but higher levels of both than in
radio-conditioned representation.

• Pericenter Distance: Posterior distributions are similarly tight as X-ray but
looser than radio; it is also slightly better calibrated than X-ray but falls short
of radio. Meanwhile, the MAP distributions show scatter that is smaller than
X-ray but larger than radio. MAP errors are around ±5%, again between
the X-ray performance of ±10% for X-ray and ±3% for Radio. Calibration is
stable but not as sharp as in radio-only conditioning. The scatter and rela-
tive errors in MAPS are diminished compared to X-ray, yet remain elevated
relative to radio-conditioned representation.

In summary, joint representation (X-ray and Radio) conditioning yields diago-
nal–aligned posteriors, which are calibrated slightly better than X-ray and worse
than Radio conditioned cINN. The posterior distributions, and its quintiles are
slightly tighter than the X-ray conditioned, while radio-conditioned cINN, showed
tighter posterior, and quantiles. The MAP estimations also consistently lie close to
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the identity lines with smaller scatter, and relative errors (except Merger Mass Ra-
tio) compared to X-ray and higher with respect to radio representation conditioned
cINN.

21.3 cross correlations : mixed conditioned inference

Finally, we assess whether the cINN trained on the combined set of X-ray and radio
maps is able to learn the cross correlations among merger parameters. As in Sec-
tion 12.3, we visualize all pairwise relations between the target merger parameters
in a corner plot. For each test object, we draw nsam = 200 posterior samples, and
plot the pooled posterior realizations (blue), MAP estimates (gold), and ground
truths (red). On the diagonal, we include the one-dimensional KDEs of the corre-
sponding marginals for posterior, MAP, and truth.

The interpretation of this visualization follows the same principles as in the pre-
vious cases. Alignment between gold and red clouds indicates accurate MAP re-
covery, while elongated blue posterior structures aligned with the red loci indicate
that the model has captured the correct correlations between parameters. System-
atic displacements of gold relative to red point to bias, and dispersed or multi-
clumped blue structures reflect residual ambiguity or multi-modality in p(x | c).

The correlation structure evident in Figure 64 is consistent with the expecta-
tions summarized in Section 12.3. Posterior samples, MAP estimates, and ground-
truth values collectively reproduce the qualitative trends anticipated from ΛCDM
scaling arguments. In particular, the mixed-conditioned inference successfully re-
covers not only the correct one-dimensional marginals but also the underlying
cross-target correlations among merger parameters.
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Figure 62: Posterior versus ground truth per target across all 620 test clusters (joint X–ray +
radio conditioning). Each panel is a 20×20 2D histogram from nsam = 500 draws
per test object and B = 20 truth bins. The white diagonal shows y = x. Black
solid: posterior median; black dashed: 10–90% quantiles. Ridges are narrower
and medians track y = x more closely than in X–ray-only conditioning, but
remain broader than radio-only.
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21.4 next-merger inference with joint x-ray and radio condition-
ing

We repeat the joint conditioning analysis for the next merger. As expected, posterior
distributions broaden compared to the last-merger case (Figure 65), particularly for
Collision Time. Calibration remains slightly better than X-ray but worse than radio.

Figures 66 and 67 show that 2D posterior-truth histograms remain aligned with
the identity, albeit with wider percentile bands than in the last-merger case, most
notably for Collision Time. Nevertheless, MAP estimates maintain strong accuracy,
with error ranges essentially identical to those in the last-merger case.

• Collision Time: The posterior and MAP estimates are consistent with the last–merger
performance, though the next–merger posteriors and their quantile intervals
are slightly broader. The MAP errors also remain ±10%, almost similar to the
last merger.

• Collision Velocity: Calibration, MAP accuracy (with MAP error ±2%), and er-
ror levels are essentially the same as in the last–merger case, apart from
modestly wider posteriors.

• Main Cluster M500c: Calibration and MAP estimates align closely with last–merger
results, with errors staying around ±1%.

• Subcluster Mass: Calibration continues to be strong, with MAP estimates close
with the last merger, and same relative MAP error of ∼ ±1%.

• Merger Mass Ratio: This parameter stays the most sensitive (bounded/frac-
tional); relative errors increase at small ratios, but the overall performance
matches the last–merger case. The MAP and posterior median track y = x

closely, with somewhat wider posteriors and quantile bands.

• Pericenter Distance: Calibration and MAP estimation are consistent with the
last–merger case, again with slightly broader posteriors. Relative MAP esti-
mation errors remain around ±5%, similar to the last-merger case.

In summary, joint X-ray and radio conditioning improves over X-ray-only inference
by reducing scatter and narrowing posteriors, but it does not reach the precision
achieved by radio-only conditioning. Performance is consistently intermediate: bet-
ter than X-ray, worse than radio, and largely stable between last- and next-merger
predictions.
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Figure 65: Next–merger: posterior distributions conditioned on the joint X–ray + radio
representation (15/592 test clusters). Gray: prior; blue: posterior; gold: MAP;
red: ground truth. Posteriors remain concentrated around the truths but are
modestly broader than in the last–merger case, chiefly for Collision Time; per-
formance remains intermediate between X–ray-only and radio-only.
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Figure 66: Next–merger: posterior vs. truth per target (joint X–ray + radio) across 592 test
clusters. Same construction as the last–merger plot with B = 20 and nsam = 500.
The white diagonal shows y = x. Black solid: posterior median; black dashed:
10–90% quantiles. Bands broaden slightly relative to last–merger, most visibly
for Collision Time, while calibration remains intermediate between X–ray and
radio.

7.5 10.0 12.5
Next Collision Time

(Gyr)

6

8

10

12

M
AP

 e
st

im
at

e

3.0 3.5
Next Collision Velocity

(log(km/s))

3.0

3.2

3.4

3.6

14 15
Next Main Cluster M500c

(log(M ))

13.75

14.00

14.25

14.50

14.75

15.00

13.5 14.0 14.5
Next Subcluster Mass

(log(M ))

13.25

13.50

13.75

14.00

14.25

14.50

0.25 0.50 0.75
Next Merger Mass Ratio

0.2

0.4

0.6

0.8

2 3
Next Pericenter Distance

(log(kpc))

2.00

2.25

2.50

2.75

3.00

3.25

3.50

7.5 10.0 12.5
Next Collision Time

(Gyr)

10

0

10

(M
AP

 - 
Gr

ou
nd

 Tr
ut

h)
 / 

Gr
ou

nd
 Tr

ut
h

3.0 3.5
Next Collision Velocity

(log(km/s))

4

2

0

2

4

14 15
Next Main Cluster M500c

(log(M ))

2

1

0

1

2

13.5 14.0 14.5
Next Subcluster Mass

(log(M ))

2

1

0

1

2

0.25 0.50 0.75
Next Merger Mass Ratio

600

400

200

0

200

400

600

2 3
Next Pericenter Distance

(log(kpc))

10

5

0

5

10

Figure 67: Next–merger: per–target MAP accuracy (top) and relative error (bottom) under
joint X–ray + radio conditioning across 592 test clusters. Top: MAP vs. truth with
medians (black solid) and 10–90% envelopes (black dashed); the pink diagonal
marks y = x. Bottom: relative MAP error ∆ with the same line styles; the pink
horizontal line marks ∆ = 0. MAP scatter and error ranges remain close to the
last–merger case and stay between X–ray-only and radio-only performance.
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21.5 discussion

Conditioning on the joint X–ray+radio representation space yields performance
that is consistently intermediate between radio-only and X–ray-only across merger
parameters (Figures 62, 63). As can be seen in Figure 61, posteriors are contracted
relative to the prior and vary across different clusters, with MAP estimation close
to the ground truth. The contraction, and hence the precision, is not as strong
as seen for radio, but similar and slightly stronger than X-ray, indicating that
joint radio and X-ray representation carries genuine conditioning signal. Poste-
rior–vs–truth heatmaps exhibit thin diagonal ridges with clear posterior contrac-
tion, and MAP–vs–truth bands show small scatter with typical relative MAP errors
of: Collision Time ∼ ±10%, Collision Velocity ∼ ±2%, Main Cluster M500c/Subcluster
Mass ∼ ±1%, Pericenter Distance ∼ ±5%. Mass Ratio remains the most delicate at
small values. Relative to X–ray alone, joint conditioning tightens posteriors and
reduces outliers; relative to radio alone, posteriors are typically broader. This sug-
gests that while thermal and non–thermal cues are complementary, in these simula-
tions the intrinsic radio morphology is the most directly informative about merger
parameters.

Although joint posteriors can be as wide as X–ray for some merger parameters,
calibration is slightly stronger (straighter median curves), 10 and 90 % quantile
lines are slightly smaller, and MAP scatter and relative error is noticeably reduced.
In other words, we often see “wide but honest” posteriors with low MAP error:
multiple solutions remain plausible, yet the posterior mode sits near the truth. This
pattern is consistent with the relatively smooth gradients in Figure 59 and with the
cINN exploiting joint structure in the full 512-D representation space, not the 2D
UMAP. Also it can be noted that, in the cINN, the well-organized properties (e.g.,
masses, velocity) could help constrain weaker ones (e.g., pericenter, and collision
time).

what the joint representation space captures . The joint SimCLR en-
coder learns a shared representation space that fuses the thermal morphology; e,g.,
concentration/cuspiness, COM offsets, and multiple peaks, and non-thermal shock
geometry, e.g., relic presence, curvature, bilateral symmetry and thickness. Our
learned UMAP, is organized into three broad bands from top–left to bottom–right:
(i) a right band dominated by cuspy X–ray morphologies with little or no radio
emission; (ii) a middle band of disturbed, merging systems, where the upper lo-
cus is radio–bright (pronounced relics/halos) and the lower locus shows weaker
non–thermal signal; and (iii) a left band populated by flatter X–ray profiles, again
with the upper portions exhibiting relics and the lower portions fainter emission.
This stratification is physically sensible: horizontal position tracks thermal core
state and overall relaxation, while vertical position reflects shock–related radio ge-
ometry and brightness.

what the cinn learns from the joint conditioning . The flow mod-
els the joint density p(x | cjoint) with conditional spline RQS couplings, effectively
factorizing p(x | c) = p(xπ1

| c),p(xπ2
| xπ1

, c) · · · . In effect, targets that are more
tightly organized in the joint representation space (e.g. judging from the UMAP;
Main Cluster’s M500c, Collision Velocity, to lower extent Subcluster Mass and
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Merger Mass Ration) become informative parents for targets that are less directly
organized (e.g, Pericenter Distance and Collision Time) through learned correla-
tions as in Figure 21.3. This is visible as tight MAP–vs–truth bands and posterior
contraction even when a single merger property shows less-smooth UMAP gradi-
ents.

modeling caveat : why cross–modal inconsistencies can arise . Even
with intrinsic maps (no instrumental effects), thermal X–ray and non–thermal ra-
dio respond to different physics, timescales, and viewing geometries, so apparent
“mismatches” are expected. X–ray surface brightness scales as

∫
n2
eΛ(T ,Z)dℓ, em-

phasizing dense cores and pressure structure over Gyr-scale relaxation, whereas
radio synchrotron highlights thin shock sheets where recently accelerated elec-
trons radiate in µG fields, with emissivity set by local Mach number, B, and ageing
losses. Consequently: (i) projection; relics brighten for edge-on shocks (long path
length) but can be faint or halo-like face-on, while the X–ray, as a line-of-sight
integral of n2

e, can remain elongated or multi-peaked even when shocks project
weakly; (ii) timescale offset; GHz synchrotron is transient (∼ 108–109 yr) whereas
X–ray asymmetries and centroid shifts can persist ⩾Gyr, so bright outer relics may
coexist with comparatively symmetric cores (early post-pericenter), or disturbed
X–ray structure may remain after radio emission fades; (iii) microphysics and envi-
ronment; weak–Mach encounters, low magnetization, or higher redshift (stronger
inverse–Compton losses with BCMB ∝ (1+ z)2) suppress radio even when X–ray
disturbance is obvious, while strong outer shocks can light up relics despite rel-
atively regular central X–ray isophotes. Two dataset choices can accentuate these
effects: percentile/log intensity normalizations intentionally remove absolute flux
(masking very faint features), and in joint experiments the X–ray is downsampled
to the radio grid, reducing small–scale thermal detail. These ingredients explain
cases like elongated X–ray isophotes without obvious relics (face-on/weak shocks,
weak B, high z) or bright relics coexisting with seemingly symmetric X–ray cores
(very recent passage, shocks at large radius), and they justify broader credible in-
tervals where cross–modal cues are genuinely in tension.

regression to the mean and calibration. Modest shrinkage toward the
population mode (regression to the mean) persists in the joint conditioning, how-
ever, it is milder than in X–ray–only conditioning reflecting the added constraints
contributed by radio features. Our calibration proxies support that these gains are
reliability improvements rather than overconfidence: posterior–vs–truth heatmaps
show better calibration with lower scatter in MAP estimation and relative error.
Quantitatively, the joint 80% posterior envelopes are narrower than X–ray–only
and typically wider than radio–only, matching the “intermediate” behavior seen in
MAP scatter. Residual curvature is consistent with (i) genuine non-identifiability
and (ii) the downsampling of X–ray to the radio grid, which slightly attenuates
detail (which also can be seen in less smooth distribution in thermodynamical pa-
rameters in the UMAP (Figure 58)). Overall, the joint model remains well calibrated:
it is slim where it should be and honestly wide where the data cannot uniquely
resolve the merger physics.
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role of the mixture-of-experts (moe). Routing in the joint space could
separates coherent regimes, for example, flat cores with single and double radio
relics or weaker radio emissions, disturbed cores with relics or radio halos, relaxed
clusters with cuspy profile and low or quiet radio surface brightness. Expert-local
flows reduce averaging across these regimes, improving sharpness and coverage
where a single global model would blur multi-modality.

intrinsic maps , augmentation, and fusion caveats . Joint inputs rely
on intrinsic maps (no PSF/beam, uv-coverage, Poisson/background, or spectral
ageing). Our physics-aware SimCLR augmentations (Section 14.2), e.g., flips/ro-
tations for orientation invariance; affine zoom/translations for centering/scale;
Gaussian blur for PSF/beam surrogates; additive Gaussian noise with for depth
variation, help the joint representation space ignore nuisances and focus on mor-
phology. Still, two caveats remain: (i) downsampling X–ray to the radio grid caps
thermal spatial detail; a more faithful fusion would be multi-wavelength and instrument-
aware; (ii) radio emissivity (shock-based, thin-sheet, simulated B) and the absence
of observational systematics (beam, uv, ageing/depolo-rization) can amplify the
radio advantage in simulation. Forward modeling and sim–to–real adaptation are
therefore necessary steps before applying joint posteriors directly to survey data.

next–merger (forecasting): joint x–ray+radio conditioning . The
joint conditioner offers an intermediate next–merger forecasts: posterior bands are
typically intermediate in between radio–only and X–ray–only, with MAP scatter
larger than radio and smaller than X-ray only. As for the other modalities, timing is
the most affected by forecasting, with broader credible intervals for Collision Time;
nonetheless, posterior–vs–truth ridges remain diagonal and contracted relative to
the prior, indicating that the joint representation space carries genuine predictive
signal for upcoming merger events.
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We construct a simulation dataset from the 352 zoom-in halos of TNG-Cluster, ren-
dered in three orthogonal projection across 8 snapshots spanning 0 ⩽ z ⩽ 1. For
every galaxy cluster at snapshot-projection pair, we use the intrinsic thermal X-
ray maps (from Nelson et al. [113]), and intrinsic non-thermal radio maps (from
Lee et al. [91]). We further assemble merging event labels at both last and next
merger events using first pericenter passage as the collision time definition (as de-
rived by Lee et al. [91]). The merger parameters are: Collision Time, Main Cluster’s
M500c, Subcluster Mass, Mass Ratio, Pericenter Distance and Collision Velocity. To
compress high-resolution maps into informative descriptors, we train SimCLR en-
coders separately on X-ray, Radio and joint X-ray+radio maps. Due to the triaxial
nature of galaxy clusters, the three projections are treated as independent samples,
resulting in a total of 8448 maps. During training, a physics-aware augmentation
suite, e.g., random flips/rotations, affine zoom and translations, Gaussian blur, and
Gaussian noise, is applied to form positive pairs and minimize the NT-Xent loss
(eq. 31). This yields to a 512-D representation space, that will serve as the condi-
tioning vector c for inference in the next step. As a baseline without representation
learning, we also build a scalar conditioner form observable properties, which will
be directly passed as the conditioning vector c.

For the next step, we use a conditional invertible neural network (cINN) that
learns an invertible, bijective map f : (x, c) → z with tractable Jacobian, where
z ∼ N(0, I), and x is the target vector (merger parameters). To exploit the represen-
tation space’s clustered structured, we partition the c-space with k-means and train
expert-local cINN. The cINN is a stack of eight rational-quadratic spline (RQS)
coupling blocks, with permutations inserted in between. In each block, the target
vector x, is split into pass-through xa, and transformed xb. A small conditioner
network (subnet) takes [xa, c] and outputs the RQS parameters of the transform
on xb. Stacking these permuted blocks yields an effective autoregressive factoriza-
tion of p(x | c) (i.e., p(xπ1

| c)p(xπ2
| xπ1

, c) · · · ), allowing the model to capture
cross-parameter dependencies. Training maximizes the conditional likelihood on
simulated pairs (x, c) (equivalently, minimizing the NLL loss as in equation 20). At
inference time, posterior samples are obtained by drawing z ∼ N(0, I) and inverting
the flow, f−1(z, c) = x, yielding samples from p(x | c).

This chapter synthesizes the empirical findings across the four conditioning
setups; Scalar, X–ray, radio, and joint X–ray+radio maps, based on the common
evaluation tools introduced earlier (posterior grids, posterior–vs–truth heatmaps,
MAP–vs–truth with relative errors, and correlation recovery). We highlight where
the self–supervised representations of maps carry the most information for merger
physics, analyze systematic error patterns, and discuss implications for both astro-
physics and practice.

201



202 results and discussion

22.1 evaluation summary and protocol

We evaluate the conditional posteriors p(x | c) for last–merger and next–merger tar-
gets using:

1. per–object posterior distribution (blue posterior kernel density estimate (KDEs),
gray test–set priors, gold MAP, red truth; e.g., Figs. 17, 33, 48, 61); the perfor-
mance is accurate when the maximum a posteriori (MAP) estimate lies close
to the ground truth, and precise when the posteriors are tightly contracted
around the ground truth.

2. population heatmaps (histograms) of posterior draws in bins of ground truth
versus truth with median and 10–90% bands (Figures 18, 34, 49, 62); cali-
brated posteriors is when the median line follows the identity line (y = x).
Performance is precise when 10% and 90% percentile lines are narrowly
around the identity line.

3. MAP–vs–truth with bin–wise envelopes and relative–error panels (Figures
19, 35, 50, 63); in the ideal case, the MAP etimate points are clustered along
the identity line, with narrow quantile lines, and low relative errors centered
near zero.

4. recovery of cross–target correlation recovery via corner plots (Figures 20, 36,
51, 64).

22.2 posterior calibration and point–estimate accuracy

Scalar-conditioned

Conditioning the cINN on scalars yields informative posteriors but not across all
of the targets, and in general, the inference performance is weaker compared to
the representation-based conditioning. Posterior’s calibration were only reliable
for Collision Time with relative MAP error ∼ [−20, 40]%, and Main Cluster M500c

with MAP error of ∼ ±3%. Calibration is also reasonable at high collision veloci-
ties and large pericenter distances. However, elsewhere, especially for Subcluster
Mass and Mass Ratio, the posterior medians depart from the identity line and
the 10–90% bands widen (heteroscedasticity). This validates the central premise
that reducing 105 − 106 pixels to a few scalars creates an information bottleneck
that drops multi–scale morphology and shock geometry, making inference across
most targets fragile and less calibrated compared to using a learned representation
space.

X–ray–conditioned (thermal morphology)

X–ray representation space yield well–calibrated posteriors whose medians track
the identity line (the ideal case) across targets with modest shrinkage (regression
to the mean) toward modal scales (Figures 34 and 35). Typical relative MAP error
ranges are: Collision Time (∼ [−20, 40]%), Collision Velocity (∼ ±5%), Main Clus-
ter M500c and Subcluster Mass (∼ ±2%), Pericenter (∼ ±10%), while Mass Ratio
remains the most delicate (bounded/fractional) with larger relative errors at small
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ratios (Figures 34, 35). As seen in Figure 33, posteriors are contracted relative to
the empirical prior and differ across different clusters, indicating that X-ray repre-
sentation carries genuine conditioning signal rather than reproducing the prior.

This performance however can be expected from relative smooth transition in
Figure 31. While the transition might not be as smooth in some merger parameter
such as Collisioin Time, and Pericenter Distance, as explained in 11.1, the cINN
receives the concatenation of condition (here is X-ray representation, and half of the
merger parameters). Therefor, good prediction in some targets with their relative
positions on the representation space, can compensate for this. That said, UMAP is
only the projection, and there might be more organization in the 512 dimensional
space, which is the condition used for the cINN.

Radio–conditioned (non–thermal morphology)

Conditioning on radio representation space yields the tightest posteriors across
all merger parameters and the smallest MAP scatter relative to X–ray and joint
conditioning (Figs. 49, 50). Typical relative MAP error ranges are narrower: Colli-
sion Time (∼ [−5, 10]%), Collision Velocity (∼ ±1%), Main Cluster M500c and Sub-
cluster Mass (∼ ±0.5%), Pericenter Distance (∼ ±3%); Mass Ratio still broadens at
small values but improves overall. Regression to the mean is present but very weak
compared to the rest of the conditioning: posterior median lie essentially on the
identity line with negligible offsets, and the envelopes are correspondingly tight.
As seen in Figure 48, posteriors contract much more strongly relative to the em-
pirical priors, confirming that the radio embedding provides a high–information
conditioner. This advantage is consistent with the very smooth, label–correlated
gradients observed in the radio UMAP (Figure 46), which indicate well–organized
neighborhoods in the full 512-D space and supply the cINN with stronger condi-
tioning signals.

Joint X–ray+Radio conditioning

The joint setup performs intermediately between X–ray and radio map conditioning
for most targets; with posteriors narrower than X–ray, and not as tight as radio.
The relative MAP error ranges are: Collision Time (∼ ±10%), Collision Velocity
(∼ ±2%), Main Cluster M500c and Subcluster Mass (∼ ±1%), Pericenter Distance
(∼ ±5%) (Figs. 62, 63). As in Figure 61, posteriors contract relative to the prior with
a weaker contraction than radio, but slightly stronger than X-ray, again hinting
that the joint representation carries genuine conditioning signal. While calibration
modestly improves over X–ray alone conditioning, the envelopes are tighter and
the MAP scatter is noticeably reduced. However, the radio conditioning, still has
the strongest performance.

This pattern is consistent with the relatively smooth gradients in Fig. 59 and
with the cINN exploiting joint structure in the full 512-D conditioner (not the 2-D
UMAP): well-organized coordinates (e.g., masses, velocity) help constrain weaker
ones (e.g., pericenter distance, collision time) via learned cross-target covariances.
This suggests that while thermal and non–thermal cues are complementary, in
these simulations the radio morphology is the most directly informative about
merger parameters.
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22.3 forecasting performance : next–merger targets

For next–merger inference, as discussed in Sections 12.5, 16.4, 19.4, and 21.4 we
see that the results for each conditioning is similar to the last mergers, with ra-
dio conditioning having the best performance, followed by joint, X-ray and scalar
conditioning. In most cases, the performance slightly degrades with the broaden-
ing being most visible for Collision Time. MAP error ranges remain close to their
last–merger counterparts for radio and joint conditioning, indicating stable for-
ward prediction; X–ray also remains competitive but with wider bands for timing.

22.4 cross–target correlations and physical consistency

Correlation plots show that the cINN recovers the qualitative ΛCDM–consistent
correlations among targets in all modalities (Figs. 36, 51, 64): e.g., links between to-
tal mass and collision velocity, pericenter and timing, and mass ratio are preserved.
Posterior clouds align with truth loci; MAP clouds overlay without large bias.

Importantly, because the flow models p(x | c) jointly via conditional spline cou-
plings that effectively factorize the density autoregressively, well–organized coordi-
nates in the embedding could inform weaker ones. As a result, even when a single
coordinate shows less smooth UMAP color gradients, the cINN can still tighten
that coordinate’s posterior by leveraging learned cross–target covariances. This is
visible as narrower, better–aligned posterior contours than would be expected from
the 2D embedding alone. Consistent with the modality ranking, radio–conditioned
posteriors are generally the least dispersed, reflecting the sharper organization of
information in the radio embedding; the joint conditioner sits between radio and
X–ray, but similar to the rest of the cases, it still benefits from the same correla-
tion–driven sharpening.

22.5 reading the embeddings

UMAP overlays of the learned representation spaces (X–ray, radio, joint) reveal
smooth, label–correlated gradients for some parameters in both observables and
merger parameters (Figs. 29–30-31; 44–45–46; 57–58–59). Radio displays especially
smooth variations along most merger parameters. Joint embedding and X-ray, also
show smooth transitions in some merger parameters (including collision velocity
and masses), with Joint embeddings sharpening some of those trends further. That
said, UMAP is a nonlinear 2D projection of a 512-D representation: it preserves
some local neighborhoods but can distort global distances and smoothness. Con-
sequently, ragged color maps in 2D do not imply poor conditioning. The cINN
consumes the full high-dimensional embedding, and the observed posterior con-
traction and MAP accuracy reflect structure in that space, even when its 2D projec-
tion looks imperfect.

22.6 mixture–of–experts (moe): specialization in representation

space

Partitioning the conditional space with k–means (as explained in Section 15.1)
and training per–cluster experts stabilizes optimization and encourages local spe-
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cialization. By experimenting, MoE has proved to yield sharper posteriors due to
the existence of heterogeneous regions of the embedding manifold and reduce
failure cases where a single global cINN can overlook the extreme cases.

22.7 systematic error patterns and failure modes

Across modalities we observe:

• Regression to the mean. In all cases the bin medians gently bend toward the
population mode; the effect is strongest for X-ray and mildest for radio. This
could arise from (i) finite data and overlapping morphologies, distinct merger
states can look similar, so the conditional posterior spreads mass and its
median drifts toward high-density regions; (ii) tail sparsity at extreme target
values, which increases epistemic uncertainty and encourages conservative
(central) estimates; and (iii) regularization effects in the flow, which favors
the solution that are conservative across the population where training signal
is weak.

• Small–denominator effects. Relative errors inflate for very small mass ratios
even when absolute errors are modest.

• Timing discretization. Since the simulation data are recorded on snapshot
base, it gives a discrete nature to time, so that the percentage errors are less
forgiving despite tight calibration; radio maps conditioning reduces this sen-
sitivity the most.

22.8 implications and outlook

The results establish a practical route from images to merger physics: label-free
contrastive encoders compress high-resolution maps into informative representa-
tions, and cINN turns those into calibrated posteriors that respect degeneracies.
For simulated intrinsic maps, radio morphology provides the most discriminative
conditioning signal; while joint X–ray+radio improves reliability over thermal (x-
ray) conditioning alone. Building on this foundation, several directions can make
the method more realistic or more informative:

from simulation to sky (instrument-aware training). Replace in-
trinsic maps with instrumented mocks that, for X-ray data, include for example
the point-spread function (PSF), spatially varying exposure and vignetting, energy-
dependent effective area and bandpass, Poisson shot noise from source and back-
ground, and both instrumental or particle as well as astrophysical backgrounds;
and that, for radio data, include for example the synthesized beam and primary-
beam attenuation, uv coverage with weighting and deconvolution artifacts, corre-
lated and thermal noise, bandpass and K-corrections to the observed frame, spec-
tral ageing from synchrotron and inverse-Compton losses, and Faraday rotation
and depolarization. Train on a mixture of intrinsic and instrumented mocks, then
fine-tune SimCLR encoders on unlabeled survey cutouts using channel-consistent
augmentations across frequency and polarization to reduce the simulation-to-real
distribution shift.
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multi-resolution, multi-wavelength fusion. Preserve thermal and non
thermal structure by fusing native-resolution X-ray and radio maps using multi-
scale encoders such as feature pyramids or and cross-modal attention, instead of
downsampling to the common low resolution. Incorporate additional tracers in-
cluding SZ, weak-lensing mass maps, and optical galaxy density/kinematics with
physics-aware co-registration that aligns astrometry, matches point spread func-
tions and beams, and account for different pixel scale. Such multi-channel inte-
gration can exploit the complementary strengths of each observable to improve
recovery of cluster mass profiles and merger geometry while reducing projection
effects by linking information across wavelengths at their natural spatial scales

scalability and deployment. Package the contrastive learning and MoE–cINN
pipeline for survey processing (eROSITA, Chandra, XMM with LOFAR, MeerKAT,
and VLA), exploiting amortized inference (milliseconds per object) and batched
evaluation.
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Figure 68: Posterior distributions of halo-scale observables inferred from X-ray embeddings
(Table 4). Each panel corresponds to one observable; rows show 15 randomly se-
lected test clusters. Gray: prior marginal distribution (KDE over the test set);
blue: inferred posterior; gold: MAP estimate; red: ground truth. The strong
overlap between posterior modes and true values indicates accurate calibration
across R500c, M500c, gas mass, metallicity, and velocity.

.1 observables conditioned on x-ray embeddings

We assess how well the cINN, conditioned on the learned X-ray embedding c, pre-
dicts the full set of observables x from Tables 4–5. We mirror the plotting schemes
used in the main text: (i) per-object posterior grids (blue posterior KDE, gray prior
KDE, gold MAP, red truth), (ii) posterior-vs-truth heatmaps (value-space B = 15

by and nsam = 500), and (iii) MAP vs. truth with bin-wise medians and 10–90% en-
velopes, plus relative-error panels ∆ = 100(MAP − truth)/truth. Across halo, BCG,
ICM, and dynamical properties, posteriors are narrow and closely aligned with
y = x, and MAP medians follow the identity with tight dispersion, consistent with
the smooth relations seen in the hexbin maps for X-ray observables.

With interpretation of MAP error, we should be mindful of near zero values;
Central Number Density, Central Cooling Time, Central Entropy, α Slope, Offset
Magnitude, and M12. The good performance is expected while we see smooth
transition in the learned X-ray representation in figures 29 and 30.
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Figure 69: Posterior distributions of BCG/BH observables inferred from X-ray embeddings
(Table 4). Same layout as Fig. 68. The posterior densities track the ground truth
closely across BCG stellar mass, star formation rate, central black hole mass,
and accretion rate. This demonstrate that the model is succesful in prediciting
the BCG properties.
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Figure 70: Posterior distributions of ICM core observables inferred from X-ray embeddings
(Table 5). Same layout as Fig 68. The posteriors reproduce the true values for
central electron density, cooling time, entropy, logarithmic slope α, and X-ray
concentration indices (Cphys, Cscaled), demonstrating robust recovery of thermo-
dynamical core structure.
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Figure 71: Posterior distributions of dynamical state observables inferred from X-ray em-
beddings (Table 5). Same layout as Fig 68. Inferred posteriors align well with
the truth for cosmic time, center-of-mass offset, and the M12 merger statistic,
supporting the method’s ability to capture both structural and temporal aspects
of cluster dynamics.
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Figure 72: X-ray embedding → halo-scale observables (Table 4). (a) Posterior vs. truth
heatmaps in value space (B = 15 bins, nsam = 500 samples per object). White:
y = x; black: posterior median (solid) and 10–90% quantiles (dashed). (b) MAP
vs. truth (top) with y = x in pink and bin-wise median (black solid) with 10–90%
envelope (black dashed). Bottom: relative error ∆ = 100(MAP − truth)/truth.
Narrow, diagonal ridges and tight envelopes confirm small bias and dispersion
across R500c, M500c, gas mass, metallicities, and velocity.
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Figure 73: X-ray embedding → BCG/BH observables (Table 4). (a) Posterior vs. truth
heatmaps (B = 15, nsam = 500). White: y = x; black: median (solid) and 10–90%
(dashed). (b) MAP vs. truth (top) and relative error ∆ (bottom). Pink: y = x/zero;
black: bin-wise median and 10–90%. Thin, diagonal ridges and tight error bands
across BCG stellar mass, SFR, BH mass, and accretion rate indicate strong cali-
bration.
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Figure 74: X-ray embedding → ICM core observables (Table 5). (a) Posterior vs. truth
heatmaps (B = 15, nsam = 500) for central number density, cooling time, en-
tropy, α slope, and X-ray concentrations Cphys, Cscaled. White: y = x; black:
median/quantiles. (b) MAP vs. truth (top) and relative error ∆ (bottom). Bin-
wise medians (solid) and 10–90% bands (dashed) remain tight with minimal
curvature, confirming accurate point estimates across core diagnostics.
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Figure 75: X-ray embedding → dynamical state observables (Table 5). (a) Posterior vs. truth
heatmaps (B = 15, nsam = 500) for cosmic time, COM offset, and M12. White:
y = x; black: median/quantiles. (b) MAP vs. truth (top) and relative error ∆

(bottom). Medians lie near y = x and ∆ = 0 with tight 10–90% envelopes. Small
systematic bends are consistent with mild shrinkage near modal scales.
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Figure 76: Posterior distributions of halo-scale observables inferred from radio embeddings
(Table 4). Each panel corresponds to one observable; rows show 15 randomly
selected test clusters. Gray: prior marginal distribution (KDE over the test set);
blue: inferred posterior; gold: MAP estimate; red: ground truth. Strong overlap
between posterior peaks and true values demonstrates accurate calibration for
R500c, M500c, gas mass, metallicity, and velocity.

.2 observables conditioned on radio embeddings

We now examine the performance of the cINN when conditioned on the repre-
sentation learned from radio maps. The conditional input cradio is obtained from
the radio encoder, and the network is tasked with predicting the full set of cluster
observables x listed in Tables 4–5.

For consistency, we employ the same visualization schemes used in the X-ray
case: (i) posterior grids for randomly chosen clusters (posterior/prior KDEs, MAP,
and ground truth), (ii) posterior–truth heatmaps constructed from B = 15 bins and
nsam = 500 posterior samples per object, and (iii) MAP vs. truth relations with
bin-wise summaries and relative-error panels. These complementary diagnostics
allow us to assess both global calibration and object-by-object predictive accuracy.

With interpretation of MAP error, we should be mindful of near zero values;
Central Number Density, Central Cooling Time, Central Entropy, α Slope, Offset
Magnitude, and M12. The good performance is expected while we see smooth
transition in the learned radio representation in figures 44 and 45.
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Figure 77: Posterior distributions of BCG/BH observables inferred from radio embeddings
(Table 4). Same layout as Fig. 76. The posteriors reproduce the true values for
BCG stellar mass, star formation rate, central black hole mass, and accretion
rate, indicating that the radio features capture both stellar and AGN-related
diagnostics.
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Figure 78: Posterior distributions of ICM core observables inferred from radio embeddings
(Table 5). Same layout as Fig. 76. Inferred posteriors align well with the truth
for central electron density, cooling time, entropy, logarithmic slope α, and con-
centration indices (Cphys, Cscaled), supporting the method’s ability to constrain
thermodynamical structure from radio morphology.
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Figure 79: Posterior distributions of dynamical state observables inferred from radio em-
beddings (Table 5). Same layout as Fig. 76. Posteriors track the true values for
cosmic time, center-of-mass offset, and the M12 merger statistic, demonstrating
that the learned radio embedding encodes both temporal and structural aspects
of cluster dynamics.
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Figure 80: Radio embedding → halo-scale observables (Table 4). (a) Posterior vs. truth
heatmaps (B = 15, nsam = 500). White: y = x; black: posterior median (solid)
and 10–90% quantiles (dashed). (b) MAP vs. truth (top) and relative error ∆

(bottom). The tight alignment of MAP medians with y = x and narrow error
envelopes confirms small bias and dispersion across R500c, M500c, gas mass,
metallicities, and velocity.

12.0 12.8 13.6 14.4 15.2

BCG Total Mass
(log(M ))

12.0

12.8

13.6

14.4

15.2

Po
st

er
io

r E
st

im
at

e

9 10 11 12 13

BCG Stellar Mass
(log(M ))

9

10

11

12

13

0 800 1600 2400 3200

BCG SFR
(M /yr)

0

800

1600

2400

3200

7 8 9 10

Central BH Mass
(log(M ))

7

8

9

10

7.5 5.0 2.5 0.0

Central BH Accretion Rate
(log(M /yr))

7.5

5.0

2.5

0.0

100

101

102

103

104

105

Nu
m

be
r o

f s
am

pl
es

 p
er

 B
in

12 13 14 15
BCG Total Mass

(log(M ))

12

13

14

15

M
AP

 e
st

im
at

e

10 12
BCG Stellar Mass

(log(M ))

9

10

11

12

13

0 1000 2000 3000
BCG SFR
(M /yr)

0

1000

2000

3000

8 10
Central BH Mass

(log(M ))

7

8

9

10

5 0
Central BH Accretion Rate

(log(M /yr))

8

6

4

2

0

12 13 14 15
BCG Total Mass

(log(M ))

2

0

2

(M
AP

 - 
Gr

ou
nd

 Tr
ut

h)
 / 

Gr
ou

nd
 Tr

ut
h

10 12
BCG Stellar Mass

(log(M ))

2

0

2

0 1000 2000 3000
BCG SFR
(M /yr)

2

0

2

1e17

8 10
Central BH Mass

(log(M ))

5

0

5

5 0
Central BH Accretion Rate

(log(M /yr))

100

0

100

BCG/BH properties

Figure 81: Radio embedding → BCG/BH observables (Table 4). (a) Posterior vs. truth
heatmaps. White: y = x; black: median (solid) and 10–90% (dashed). (b) MAP
vs. truth (top) and relative error ∆ (bottom). Results show strong calibration
with tight error distributions across BCG stellar mass, star formation rate, black
hole mass, and accretion rate.
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Figure 82: Radio embedding → ICM core observables (Table 5). (a) Posterior vs. truth
heatmaps for central electron density, cooling time, entropy, slope α, and con-
centrations Cphys, Cscaled. White: y = x; black: median/quantiles. (b) MAP vs.
truth (top) and relative error ∆ (bottom). Small dispersion and nearly unbiased
errors confirm robust predictions for ICM core properties.
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Figure 83: Radio embedding → dynamical state observables (Table 5). (a) Posterior vs. truth
heatmaps for cosmic time, COM offset, and M12. White: y = x; black: me-
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