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Bachelor’s Thesis: Black Hole’s Information Paradox (PDF) 

 

Abstract:  

In this thesis, I studied the black hole information paradox and reviewed several efforts 

made so far to solve it. Chapter one I began by taking a look at the history of black holes. In 

Chapter two I studied mathematical tools needed, and then looked at the similarities between the 

laws of classical thermodynamics and black holes. In the next chapter, I used Unruh effect to derive 

Hawking radiation, and the reason for this was to show the dependence of the concepts of particles 

and vacuum on the observer. Following that in chapter four, information and its relationship with 

entropy were introduced. In the last chapter, I studied the leading cause of the paradox, the 

information-free vacuum on the event horizon predicted by general relativity, which stretches as 

the black holes evaporates and produces Hawking pairs. The first solution we came up with was 

the remnant idea, which is that the black hole evaporates until it reaches the Planck size. We then 

studied to Page's theory, which states that after Page time, information begins to emerge from the 

black hole. Finally, I studied the idea of complementarity and an interesting article on 

entanglement and wormholes. The proposed solutions each had contradictions that was discussed: 

infinite degeneracy in remnant theory, loss of information in Page theory, and the existence of a 

firewall at the black hole’s even horizon in complementarity theory. The principle of equivalence 

of general relativity is in conflict. 

Summary of chapter one: 

Paradoxes that have a long history in the natural sciences and mathematics usually arise 

either from concepts that are not essentially paradoxical (such as the twin paradox of particular 

relativity) or from contradictions between theories. The black hole information paradox is the 

result of a contradiction between general relativity and quantum mechanics.  

Stephen Hawking's paper suggests that information in a black hole will be lost forever once 

the black hole eventually evaporates completely. In quantum mechanics, the evolution of a 

quantum state must be determined by unitary operator. One of the attempts for preserving black 

hole’s evaporation was encoding the information in a Planck sized remnant. Another solution was, 

the idea of a complementarity that stated that information would both cross the event horizon and 

come back and get collected by an outside observer bit no observer can detect both. Nevertheless, 

in 2013 the AMPS "firewall" paradox showed that complementarity requires an energetic quantum 

layer on the event horizon; while the principle of equivalence of general relativity says that an 

observer does not feel anything when he falls on the horizon. 

 

 

Summary of Chapter two: 

https://a0d6a29e-3b27-4ed9-bdbb-7e51f56dd30f.filesusr.com/ugd/546493_c8120b4eb38a4b61a041960659083c16.pdf
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Using two books of Carrol  [1] and Wald  [2], studied the mathematics behind black holes. Starting 

from Schwarzschild metric: 

We found Riemann curvature Tensor for Schwarzschild black hole to be 𝐾 =
48𝐺2𝑀2

𝑐4𝑟6
which 

diverges as 𝑟 → 0, which point out a singularity in the middle.  [3] From equation 1 we see two 

singularities at 𝑟 =  0 and 𝑟 =
2𝐺𝑀

𝑐2
 which is Schwarzschild radius which is only a characteristic 

of metric. Schwarzschild is the unique solution to Einstein’s field equations which is:  [1] 

(2) 
𝑅𝜇𝜈 =

8𝜋𝐺

𝑐4
(𝑇𝜇𝜈 −

1

2
𝑇𝑔𝜇𝜈) 

 

 

Then we moved on studying Rindler metric; which is within Minkowski to see what would 

metric look like for an eternally accelerating observer. Picking a new set of coordinated (equation 

3) we found a region (region I) in Rindler space-time which is only accessible for an eternally 

accelerating observer (fig. 1) [4]  

 

 

 

(3) 
𝑡 =  

1

𝑎
𝑒𝑎𝜉 sinh(𝑎𝜂) 

𝑥 =  
1

𝑎
𝑒𝑎𝜉 cosh(𝑎𝜂) 

 

Under new coordinates 𝜉 and 𝜂, Minkowski metric will become Rindler metric: 

(4) ⅆ𝑠2 = 𝑒2𝑎𝜉(−ⅆ𝜂2 + ⅆ𝜉2) 

(1) 
ⅆ𝑠2 = −(1 −

2𝐺𝑀

𝑟𝑐2
) 𝑐2 ⅆ𝑡2 + (1 −

2𝐺𝑀

𝑟𝑐2
)
−1

ⅆ𝑟2 + 𝑟2 ⅆ𝜃2 + 𝛾2 𝑠𝑖𝑛2 𝜃 ⅆ𝜑2 

Figure 1 
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The lines 𝑥 =  ± 𝑡 are future and past null infinity, so they show the horizons and are 

different from black hole’s event horizons.  

For adding angular momentum and charge to the equation of Schwarzschild black holes, by 

changing Einstein-Maxwell action and finding the equation of motion, we will find: [4] 

 

(5) 
ⅆ𝑠2 = −(

𝛥 − 𝑎2 sin2 𝜃

𝛴
)ⅆ𝑡2 +

𝛴

𝛥
ⅆ𝑟2 −

2asin2 𝜃

𝛴
(𝑟2 + 𝑎2 − 𝛥)ⅆ𝑡ⅆ𝜑 + 𝛴 ⅆ𝜃2

+
(𝑟2 + 𝑎2)2 − 𝛥𝑎2 sin2 𝜃

𝛴
𝑠𝑖𝑛2 𝜃 ⅆ𝜑2 

 

Where 𝛴 = 𝑟2 + 𝑎2 cos2 𝜃 , and 𝛥 = 𝑟2 − 2𝑀𝑟 + 𝑄2 + 𝑎2 

In case of 𝑄 = 0, we find Kerr metric which is not spherically symmetric, so Birkhoff’s 

theorem will fail, so resulting in a not valid metric on the surface of a collapsing matter. After the 

space time turns to a stationary state, we have time translation symmetry or a timelike Killing 

vector.  [4] 

I went on studying mathematics used in black holes using Carrol  [1]and Poisson [5]. By 

defining Lie derivative that acts on metric tensor, we found Killing vector as: [2] 

(6) (ℒ𝜈𝑔)𝜇𝜈 = 𝛻𝜇𝜈𝜈 + 𝛻𝜈𝜈𝜇 = 0 

 

We used Killing horizons to define surface gravity as: 

(7) 𝜒𝜇𝛻𝜇𝜒
𝛼 = −𝜅𝜒𝛼  

A stationary observer’s 4-velocity:  [1] 

(8) 𝜅𝜇 = 𝑉𝑢𝜇 

 

Where V is redshift factor and is defined as √−𝜅𝜇𝜅
𝜇. Using charge conservation and calculating 

𝑝𝜇, we will get Q =  −E = −𝑚 (1 −
2𝑀

𝑟
)
ⅆ𝑡

ⅆ𝜏
.  

Knowing the frequency is given by 𝜔 = −𝑝𝜇𝑢𝜇, we can write 𝐸 = −𝑝𝜇𝑘𝜇. Using equation 

8 we will have 
𝐸

𝑉
= 𝜔. 4 acceleration 𝑎𝜈 = 𝑢𝛼𝛻𝛼𝑢

𝛼 can be defined as 𝑎𝜈 = 𝑢𝛼𝛻𝛼𝑢
𝛼 with the 

magnitude of 𝑎 =
1

𝑉
√𝛻𝜈𝑉𝛻

𝜈𝑉 which equals infinity at the horizon with zero redshift factor. The 

surface gravity can be defined as  [1] 
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(9) κ =  Va 
 

 

Calculating surface gravity in Schwarzschild space time will lead to the result  [3] 

(10) 
κ =

1

4M
 

 

In the last section of chapter 2, I studied the Thermodynamics of black holes which in summary 

can be written as: 

 

Black Holes Classical Thermodynamics  Law 

The surface gravity κ remains constant over 

the event horizon of a stationary black holes 

The temperature T is constant all 

through a system in thermal equilibrium 

Zeroth 

ⅆ𝑀 =
1

8𝜋
κdA + ΩHⅆ𝐽 

ⅆ𝐸 = 𝑇ⅆ𝑆 +𝑊 First 

The area A increases or stays the same in 

any process 

The entropy S increases or stars the 

same in any process 

Second 

κ = 0 cannot be achieved in any physical 

process 

T = 0 can not be achieved in any 

physical process 

Thrid 

 

 Summary of chapter 3 

I started first with a short introduction to field theory using Lancaster Quantum Field 

Theory for the Gifted Amateur  [6] 

For a real massive Scalar field with Lagrangian ℒ =
1

2
𝑔𝜇𝜈𝜕𝜇𝜙𝜕𝜈𝜙 −

1

2
𝑚2𝜙2 . Deriving the 

equation of motion ☐𝜙 = 𝑚2𝜙, that gives us the plane wave solution: 

(11) 𝜙 = 𝜙0𝑒
ⅈ𝑝𝑢𝑥

𝜇
 

 

We want to make a complete orthonormal basis for solutions consists of all positive 

frequency place wave model and their complex conjugates {𝜓𝑝, 𝜓
∗𝑝}  [1] 

(12) 𝜙 = ∫ ⅆ3𝑝(𝑎𝑝𝜓𝑃 + 𝑎𝑝
†𝜓𝑃

∗ ) 

 

We define 𝜓𝑝 as positive frequency (𝜕𝑡𝜓𝑃 = −𝑖𝜔𝜓𝑃 ) and 𝜓𝑝
∗ as negative frequency 

(𝜕𝑡𝜓𝑝
∗ = 𝑖𝜔𝜓𝑝

∗). The coefficients are annihilation and creation operators satisfies:  [1] 

[𝑎𝑝, 𝑎𝑃′] = 0 

(13) [𝑎𝑝
† , 𝑎

𝑝′
† ] = 0 

[𝑎𝑝, 𝑎𝑝′
† ] = 𝛿3(𝑝 − 𝑝′) 
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And in the vacuum state 𝑎𝑃|0⟩ = 0. Using the new inertial frame: 

(14) 𝑡 = 𝛾(𝑡′ + 𝑣. 𝑥′) 

(15) 𝑥 = 𝛾(𝑥′ + 𝑣𝑡′)1 

Using equation 11 and 𝜔′ = 𝛾(𝜔 − 𝑣. 𝑘) we will find:  [2] 

(16) 
𝜕𝑡′𝜓𝑝 =

𝜕𝑥𝜇

𝜕𝑡′
𝜕𝜇𝜓𝑝 = −𝑖𝜔

′𝜓𝑝 

 

This shows that a quantum particle in a flat space, can be boosted to have a boosted 

momentum in the new frame. As a result, the notions of particle and vacuum are independent of 

observer in flat space.  [7] 

What about curved spaces?  The same as the flat space we pick a complete set {𝑓ⅈ, 𝑓ⅈ
∗} where:  [4] 

(17) 𝜙 =∑(𝑎ⅈ𝑓ⅈ + 𝑎ⅈ
†𝑓ⅈ
∗)

ⅈ

 

 

And the vacuum is defined as 𝑎ⅈ|0𝑓⟩ = 0     and the excitation states can be found from |𝑛ⅈ⟩ =
1

√𝑛𝑖!
(𝑎ⅈ
†)
𝑛𝑖
|0𝑓⟩ . Though unlike flat space, {𝑓ⅈ, 𝑓ⅈ

∗} is not unique. So we can do the same in another 

basis {𝑔ⅈ, 𝑔ⅈ
∗} where 𝜙 =∑ (𝑏ⅈ𝑔ⅈ + 𝑏ⅈ

†𝑔ⅈ
∗)

ⅈ
.  

If we want to see how different observers observe a phenomenon,  [1] 

(18) 𝑔ⅈ =∑(𝛼ⅈ𝑗𝑓ⅈ + 𝛽ⅈ𝑗𝑓ⅈ
∗)

ⅈ

 

(19) 𝑓ⅈ =∑(𝛼ⅈ𝑗
∗ 𝑔𝑗 − 𝛽ⅈ𝑗𝑔𝑗

∗)

ⅈ

 

Where 𝛼ⅈ𝑗 = (𝑔ⅈ, 𝑓ⅈ) and 𝛽ⅈ𝑗 = −(𝑔ⅈ, 𝑓𝑗
∗). Where:  [1] 

 ∑(𝛼ⅈ𝑘𝛼𝑗𝑘
∗ − 𝛽ⅈ𝑘𝛽𝑗𝑘

∗ ) = 𝛿ⅈ𝑗
𝑗

 

(20) ∑(𝛼ⅈ𝑘𝛽𝑗𝑘 − 𝛽ⅈ𝑘𝛼𝑗𝑘) = 0

𝑗

 

Using Bogolubov transformation we find:  [1] 

 𝑎ⅈ =∑(𝛼ⅈ𝑗𝑏𝑗 + 𝛽𝑗𝑘
∗ 𝑏𝑗

†)

ⅈ
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(21) 𝑏ⅈ =∑(𝛼ⅈ𝑗
∗ 𝛼𝑗 − 𝛽ⅈ𝑗

∗ 𝑎𝑗
†)

ⅈ

 

Now with quantum states in f-vacuum, we find: 

⟨0𝑓|𝑛𝑔ⅈ|0𝑓⟩ = ⟨0𝑓|𝑏ⅈ
†𝑏ⅈ|0𝑓⟩ = 𝑎𝑗

† ⟨0𝑓|∑ (𝛼ⅈ𝑗𝑎𝑗
† − 𝛽ⅈ𝑗𝑎𝑗)(𝛼ⅈ𝑘

∗ 𝛼𝑘 − 𝛽ⅈ𝑘
∗ 𝑎𝑘

†)
𝑗𝑘

|0𝑓⟩

= (−𝛽ⅈ𝑗)(−𝛽ⅈ𝑘
∗ )⟨0𝑓|𝑎𝑗𝑎𝑘

†|0𝑓⟩ =  𝛽ⅈ𝑗𝛽ⅈ𝑘
∗ 𝛿𝑗𝑘⟨0𝑓|0𝑓⟩ = 𝛴𝑗𝛽ⅈ𝑗𝛽ⅈ𝑗

∗ ≠ 0              (22) 

This means that the notions of particle and vacuum are dependent on observers in curved space.  

From adiabatic theory, we know that if potential changes slowly, will leave mod to stay in 

vacuum state. But if potential changes suddenly:  [6] 

(23) |0⟩ω1 = 𝐶|0⟩ω2 + 𝐶1|1⟩ω2 + 𝐶2|2⟩ω2 +⋯ 

Since the wave function is symmetric, 𝐶1 = 𝐶3 = ⋯ = 0 

|0⟩ω1 = 𝐶|0⟩ω2 + 𝐶2|2⟩ω2 +⋯ 

As a result, a sudden change can result in an excited pair.  

 

The next section is about the Unruh effect.  

For an stationary observer in r >  GM part of figure one, Rindler’ s metric is: 

(24) ⅆ𝑠2 = 𝑒2𝑎𝜉(−ⅆ𝜂2 + ⅆ𝜉2) 
 

And there exist a killing vector: 𝜕𝜂 =
𝜕𝑡

𝜕𝜂

𝜕

𝜕𝑡
+
𝜕𝑥

𝜕𝜂

𝜕

𝜕𝑥
= 𝑎(𝑥

𝜕

𝜕𝑡
+ 𝑡

𝜕

𝜕𝑥
) which is space like in II 

and III regions and timelike in I and IV. as a result x =  ± t are killing horizons and in IV region 

we can have 𝑥 = −
1

𝑎
𝑒𝑎𝜉 cosℎ(𝑎𝜂) and 𝑡 = −

1

𝑎
𝑒𝑎𝜉 sin ℎ(𝑎𝜂). We will have  

 

(25) 
☐𝜙 = 𝑒−2𝑎𝜉 (

𝜕2

𝜕𝜂2
+
𝜕2

𝜕𝜉2
)𝜙 = 0 

 

Can be solved by a plane wave mode 𝜔 = |𝑘| and get 

(26) 𝜕

𝜕𝜂
𝑔𝑘 = −𝑖𝜔𝑔𝑘 
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The killing vector for positive frequencies must point to future and as a result, 
𝜕

𝜕𝜂
 is in 

opposite ways in I and IV. So we need two mods:  [1] 

 In region I: 

(27) 
𝑔𝑘
(1)
=

1

√4𝜋𝜔
𝑒−ⅈ𝜔𝜂+ⅈ𝑘𝜉 

In region IV:  

(28) 
𝑔𝑘
(2)
=

1

√4𝜋𝜔
𝑒ⅈ𝜔𝜂+ⅈ𝑘𝜉 

Now we will have:  

(29) 𝜕

𝜕𝜂
𝑔𝑘
(1) = −𝑖𝜔𝑔𝑘

(1)
 

𝜕

𝜕𝜂
𝑔𝑘
(2) = −𝑖𝜔𝑔𝑘

(2)
 

 

Comparing to the same equations we had, we will see both are for the positive frequencies.  

These will make a complete set in space-time. We will have  

(30) 𝛷 = ∫ ⅆ𝑘(𝑏𝑘
(1)𝑔𝑘

(1) + 𝑏𝑘
(1)†𝑔𝑘

(1)∗ + 𝑏𝑘
(2)𝑔𝑘

(2) + 𝑏𝑘
(2)†𝑔𝑘

(2)∗) 
 

Comparing 12 and 30 we can see that the vacuums all not the same. The vacuum observed 

by an observer in Minkowski space time 𝑎𝑘|0𝑀⟩ = 0, while for an observer in Rindler space time 

𝑏𝑘
(1)|0𝑅⟩ = 𝑏𝑘

(2)|0𝑅⟩ = 0 which is full of particles and the Minkowski observer will not see 

vacuum.  

Defining the coordinates as: 

(31) 
𝑒−𝑎(𝜂−𝜉) = {

𝑎(−𝑡 + 𝑥)   𝐼
𝑎(𝑡 − 𝑥)     𝐼𝑉

 

 

(32) 
𝑒𝑎(𝜂−𝜉) = {

𝑎(𝑡 + 𝑥)          𝐼
𝑎(−𝑡 − 𝑥)     𝐼𝑉

 

Using 27 and 28, for 𝜔 = 𝑘 we will find: 

(33) 
√4𝜋𝜔𝑔𝑘

(1)
= 𝑒−ⅈ𝜔𝜂+ⅈ𝑘𝜉 = 𝑒−ⅈ𝜔(𝜂−𝜉) = 𝑎

ⅈ𝜔
𝑎 (−𝑡 + 𝑥)

ⅈ𝜔
𝑎  

(34) 
√4𝜋𝜔𝑔−𝑘

(2)∗ = 𝑒ⅈ𝜔𝜂+ⅈ𝑘𝜉 = 𝑒ⅈ𝜔(𝜂−𝜉) = 𝑎
ⅈ𝜔
𝑎 (𝑡 − 𝑥)

ⅈ𝜔
𝑎

= 𝑎
ⅈ𝜔
𝑎 [𝑒−ⅈ𝜋(−𝑡 + 𝑥)]

ⅈ𝜔
𝑎 = 𝑎

ⅈ𝜔
𝑎 𝑒

𝜋𝜔
𝑎 (−𝑡 + 𝑥)

ⅈ𝜔
𝑎  
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We can have: 

(35) 
√4𝜋𝜔 (𝑔𝑘

(1) + 𝑒−
𝜋𝜔
2𝑎𝑔−𝑘

(2)∗) = 𝑎
ⅈ𝜔
𝑎 (−𝑡 + 𝑥)

ⅈ𝜔
𝑎  

 

And taking we need to normalize 35, we will have  

(36) ϕ = ∫ dk (Ck
(1)hk

(1) + Ck
(1)†hk

(1)∗ + Ck
(2)hk

(2) + Ck
(2)†hk

(2)∗) 

 

And as we had before we can have: 

(37) 
𝑏𝑘
(1)
=

1

√2 sin ℎ (
𝜋𝜔
𝑎 )

(𝑒
𝜋𝜔
2𝑎 𝑐𝑘

(1) + 𝑒−
𝜋𝜔
2𝑎 𝑐−𝑘

(2)†) 

𝑏𝑘
(2)
=

1

√2 sin ℎ (
𝜋𝜔
𝑎 )

(𝑒
𝜋𝜔
2𝑎 𝑐𝑘

(2) + 𝑒−
𝜋𝜔
2𝑎 𝑐−𝑘

(1)†) 

In the end, for region I we will have: 

⟨0𝑀|𝑛𝑅
1(𝑘)|0𝑀⟩ = ⟨0𝑀|𝑏𝑘

(1)†
𝑏𝑘
(1)
|0𝑀⟩ =

1

2 sin ℎ (
𝜋𝜔
𝑎 )

⟨0𝑀|𝑒
−
𝜋𝜔
2𝑎 𝑐−𝑘

(2)𝑐−𝑘
(2)†|0𝑀⟩

=
𝑒−
𝜋𝜔
2𝑎

2 sin ℎ (
𝜋𝜔
𝑎 )

𝛿(0) =
1

𝑒−
2𝜋𝜔
𝑎 − 1

𝛿(0)                                                            (38) 

Which will have the expectation value of: [1] 

(39) 𝑇 =
𝑎

2𝜋
 

So an observer constantly accelerating in Minkowski vacuum experiences a thermal bath of 

particles. 
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The last part of this chapter is dedicated to evaporation of black holes. According to 

quantum mechanics, suggests that black holes eventually after a time that is bigger than universe’s 

age will evaporate and leave a thermal radiation which will not contain any information. A very 

simple way of Hawking radiation is photon pairs which because of oscillations near the event 

horizon will appear. If this process happens near the event horizon, the one with energy –E will 

fall inside while the other will move to infinity where one observer will detect it as Hawking 

radiation. Taking two observers at r1 and r2 (infinity). For a static observer just outside the horizon, 

at 2𝑀 ≫
1

a1
  we see that the observer at r1 experiences a flat space time, the observer at 𝑟2 is not 

necessarily in a flar space time and will observe the Unruh radiation with redshift factor V.  

(40) 

T2  =  
V1
V2
 T1     ;    𝑉 = √(1 −

2𝑀

𝑟
) 

 

From 39 and 9, we will find  

(41) T1  =
 κ

2π
 

 

 

And this is the temperature of Hawking radiation.  

 

 

Summary of Chapter 4 

 

At the beginning of this chapter, I started studying quantum information which was mostly 

done in more detail in my other research project prior to this. After that I moved on to the to 

studying what would happen if a bit falls into a black hole.  

Using Planck-Einstein equation 𝐸 = ℎ𝑓 and Einstein equation 𝐸 = 𝑚𝑐2we find that 𝐸 =
ℎ𝑐

𝑅𝑠
. So the amount that the radius has increased equals 𝛥𝑅𝑆 =

2𝐺ℎ

𝑐3𝑅𝑠
, which gives 𝐴 =

16𝜋𝐺ℎ

𝑐3
=

16𝜋ℓ𝑝
2 , this will give us 𝑆 =

𝐴

4
 which is the famous Bekenstein’s formula.  [8]  
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Summary of Chapter 5 

 

I started with describing the paradox using the method used in Mathur  [9]. By introducing 

some nice spacelike slices that contains the black hole and goes inside the horizon so we can study 

Hawking pairs. These slices should be on an entirely spacelike slice where the intrinsic curvature 

𝑅(3) ≪
1

𝑙𝑃
2 , have small extrinsic curvature 𝐾 ≪

1

𝑙𝑃
2 , in the neighborhood of the slice the four 

curvature must be small 𝑅(4) ≪
1

𝑙𝑃
2 , matter on the slice cannot approach Planck scale because of 

quantum gravity effects. (fig 2)  

 

As the slices change, the Hawking pairs will be created, taking b to be the particles that 

goes to infinity and will be detected as Hawking radiation, and c the particles that will fall into 

black holes, the entangled state can be written as: [10] 

(42) 
|𝛹⟩ ≈ |𝜓⟩𝑚𝑎𝑡𝑡𝑒𝑟⨂|𝜓⟩𝑝𝑎ⅈ𝑟 = (

1

√2
|↑⟩𝑚𝑎𝑡𝑡𝑒𝑟 +

1

√2
| ↓⟩𝑚𝑎𝑡𝑡𝑒𝑟)⨂(

1

√2
|0⟩𝑐|0⟩𝑏 +

1

√2
|1⟩𝑐|1⟩𝑏) 

 

Figure 2: Penrose diagrams 
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Dividing slices in three sections of inside, outside, and alongside the horizon, we see that 

a complete slice will be given by all of them, and as the parameters are shifting forward, they 

evolve one slice to another. According to fig 3, 𝛴𝐶 will remain the same, while 𝛴𝑂 shifts forward 

in time and 𝛴𝐼 get longer. As they evolve needs to stretches to connect them together and this is 

what causes the Hawking pair.  [10] 

Now we want to see how the entanglement of Hawking’s pair changes in time. We find that in the 

nth slice we will have  

(43) 
|𝛹⟩ = |𝜓⟩𝑚𝑎𝑡𝑡𝑒𝑟⨂(

1

√2
|0⟩𝑐1|0⟩𝑏1 +

1

√2
|1⟩𝑐1|1⟩𝑏1)

⊗ (
1

√2
|0⟩𝑐2|0⟩𝑏2 +

1

√2
|1⟩𝑐2|1⟩𝑏2)⊗ … 

⊗ (
1

√2
|0⟩𝑐𝑛|0⟩𝑏𝑛 +

1

√2
|1⟩𝑐𝑛|1⟩𝑏𝑛) 

 

When black hole has radiated all its mass as Hawking radiation, it will leave only a 

radiation field that we have shown with 𝑏1 ،𝑏2 ، … ، 𝑏𝑛. Here the black hole has an entropy of 𝑁 ln 2 

and was a mixed state. Before evaporation it was entangled with enteral states and had zero von 

was pure. As a result, this contradicts unitary. Then with few example I showed that a mixed state 

can contain all the information, and on the other hand, a final pure state can cause information loss.  

 

 

Figure 3: Evolution of Slices and the Black Hole 
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After this part, I studied few given ideas and solutions. I started with an idea called 

“Remnant” which suggests that the evaporation will stop once it reaches the Planck’s length. But 

since the remnant is entangled with entropy of 𝑁 ln2 to the radiation, we need minimum N internal 

state with finite energy, however arbitrary N can cause arbitrary degeneracy. [10],  [11] 

The next theory is “Bleaching” which suggests that the horizons bleaches the information 

from getting inside. This will contradict the emptiness of horizon which was assumed before. [12] 

The next theory, was Page theory. I started with finding the average Information for a system 

as: [13], [14] 

(44) 𝐼𝑚,𝑛 ≡ 𝑆𝑚𝑎𝑥 − ⟨𝑆𝐴⟩ = ln𝑚 − 𝑆𝑚,𝑛 

 

And using Mathematics page found the equation below (Although he could not prove it. However, 

there is a written proof in my thesis for this equation.) 

(45) 
𝑆𝑚,𝑛 = ∑

1

𝑘
−
𝑚 − 1

2𝑛

𝑚𝑛

𝑘=𝑛+1

 

 

For the 1 ≪ 𝑚 ≤ 𝑛 Page will approximate 𝑆𝑚,𝑛 as 

(46) 𝑆𝑚,𝑛 = 𝑙𝑛𝑚 −
𝑚

2𝑛
 

 

If B is the black hole system, and R radiation and BR is the final pure system, we will find: 

(47) 
               ⟨𝐼𝑅⟩ = ln𝑚 − 𝑆𝑅 = ln𝑚 − ln𝑛 + (ln 𝑛 +

𝑛 − 1

2𝑚
− ∑

1

𝑘

𝑚𝑛

𝑘=𝑛+1

)

= ln𝑚 +
𝑛 − 1

2𝑚
− ∑

1

𝑘

𝑚𝑛

𝑘=𝑛+1

 ≈ ln𝑚 − ln 𝑛 +
𝑛

2𝑚
 

 

               ⟨𝑆𝑅⟩ = ln 𝑛 − (ln 𝑛 +
𝑛 − 1

2𝑚
− ∑

1

𝑘

𝑚𝑛

𝑘=𝑛+1

) =
𝑛 − 1

2𝑚
− ∑

1

𝑘

𝑚𝑛

𝑘=𝑛+1

 ≈ ln 𝑛 +
𝑛

2𝑚
 

 



 

 

Shera Jafaritabar - 14 
 

And given mn=291500 we will have:  [13], [14] 

We see that when has a smaller Hilbert spatial 

dimension remains than a black hole, this radiation usually 

contains very little information and is maximally mixed. 

Now consider the case where the black hole radiates most 

of its energy so that the radiation has larger dimensions. If 

one examines only part of the radiation, he will see only a 

very small amount of information in separate parts. 

Information instead is in the interaction between all the 

parts. We can also see that information begins to emerge 

after about half the entropy of a black hole has evaporated. 

Half of the initial entropy is the time it takes for a black hole 

to reach from the initial state to the point where it begins to 

radiate information, which is called "page time".  

This time point is clearly visible in Figure 5.3. A 

black hole that has passed its page time is called an old 

black hole. As a result, no information is available until 

the fixed part of the black hole entropy has been destroyed, which means that [13], [14] 

(48) 𝑡ⅈ𝑛𝑓𝑜~ 𝐵𝑙𝑎𝑐𝑘 ℎ𝑜𝑙𝑒
′𝑠 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒 ~ 𝑅3 

 

This part is inspired from Patrick Hayden’s lectures.  [15], [16], [17]. Next, an example on 

Bob and Alice, and what would happen if Alice falls into black hole and Bob collects Hawking 

radiation. Then Bob also goes into black hole and Alice wants to compare his results with Bob. 

(49) 

𝜏~𝑅 exp(
−𝛥𝑡

𝑅
)
𝜏>
1

𝑀
→  𝛥𝑡 < 𝑅 l𝑜𝑔  (𝑀𝑅)

𝑀~𝑅
→  𝛥𝑡 < 𝑅 log  (𝑅) 

 

 So we need 𝑡ⅈ𝑛𝑓𝑜 > 𝑅 l𝑜𝑔𝑅 so that Alice and Bob will not compare their results and no-

cloning theorem will not be violated. But on the other hand we still have Page’s theorem that 

information will not come out. Following this, we will study an important example which is  

Figure 5: Average von Neumann Entropy versus 
Entanglement Entropy 
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we find that in order for D to exist so we can decode, we need:  

(50) 𝜎𝐵′𝑁 = 𝜎𝐵′⊗𝛷𝑁 

 

Now we want to try to find a mutual information between N and M 

B is a pure system, this means that eigenvalues of BM equals 

eigenvalues of M and mutual information is a function of entropy and 

entropy is a function of Eigen functions so we can add B to M: 

(51) 𝐼(𝑁;𝑀)𝜔 = 𝐼(𝑁; 𝐵𝑀)𝜔 = 𝐼(𝑁; 𝑅𝐵
′)𝜎 

 

 

after using equation 50 and Renyi 

entropy we will find: 

This means that the correlation 

between N and BM wil decrease when 

information falls into black hole and if 

we have enough information we will 

get zero correlation. This means that S0(N)ω is maximally mixed and 𝑆0(𝑁)𝜔 =

log 𝑟𝑎𝑛𝑘 [|𝜉0⟩⟨𝜉0| ⊗ ϕN] = 𝑘. Now we need to maximize the rank. For this purpose, we will use 

an old black hole which is already entangled with its own radiation. And again equation 50 must 

hold for us to be able to decode. For an old black hole we will have: 

 

(53) 
∫ ∥ 𝜎𝐵′𝑁 − ℒB′ ⊗ϕN ∥

2 ⅆ 𝑉 ≤
ⅆ𝑁ⅆ𝐵𝑀

ⅆ𝑅
2  𝑡𝑟 [(𝜔𝐵𝑀𝑁)

2]

=
2𝑘2𝑛

22𝑟
2−(𝑛−𝑘) = 22(𝑘−𝑟) 

 

So we would be able to decode if 𝑟 < 𝑘. From equation 49 we 

will have only when 𝑡ⅈ𝑛𝑓𝑜 < 𝑟𝑠 log 𝑟𝑠 Bob can go inside the black hole 

and compare his result, and this will contradicts complementarity 

theorem. 

 

 

(52) 
   ∫ ∥ 𝜎𝐵′𝑁 − ℒB′⊗ϕN ∥

2 ⅆ 𝑉

≤ 2𝑆0(𝑁)𝜔 × 2𝑆0(𝐵𝑀)𝜔

× 2−𝑆2(𝐵𝑀𝑁)

× 2−2𝑟~2𝐼(𝑁;𝐵𝑀)−2𝑟 
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The last part of this research was complementarity theorem. This theory states that when 

an object falls inside a black hole, it will hit stretched horizon which is one Planck length above 

Schwarzschild hoizon, which will radiate it as Hawking radiation. So this object will be seen inside 

from the point of view of an observer falling inside the black hole and will be seen outside from 

the observer outside, but no one sees both at the same time.  

 The slices will all satisfy the conditions mentioned previously. We define a Cauchy surface 

which ΣP = Σbh ∪ Σout. According to the last condition, |ψ(Σ)⟩ can smoothly change to |ψ(Σp)⟩ 

and then |ψ(Σ′)⟩ (Σ′ is the space after evaporation of black hole. If a unitary matrix S acts on 

|ψ(Σ)⟩ gives |ψ(Σ′)⟩, and |ψ(Σ′)⟩ needs to be a pure state. Also |ψ(Σ′)⟩ is the result of the 

evolution of |ξ(Σout)⟩. This means that  |ψ(Σp)⟩ = |Π(Σbh)⟩ ⊗ |ξ(Σout)⟩.  [18] 

This product is the result of evolution of |ψ(Σ)⟩ and 

so is |𝜉(𝛴𝑜𝑢𝑡)⟩. So it seems like |Π(Σbh)⟩ is independent of 

|ψ(Σ)⟩ or in other words, it is bleaching the information. 

Complementarity contradicts this by stating that 𝛴𝑝  cannot 

simultaneously be at both inside and outside of the black 

hole. [18] 

Since Hawking pair only is created in vacuum, and 

not in a stretched horizon, there is a non-local physics in 

Schwarzschild radius. According to AMPS, we need a 

firewall in horizon, which contradicts equivalence principle. 

This leads to a non-physical firewall. [12] 

 

 

An observer from distance receives Hawking radiation, while another observer falling into 

a black hole experiences. For the first observer, Hawking's initial radiation is farther away from 

the black hole, while the newly emitted radiation is in the stretched horizon. Second observer 

measures the vacuum on the horizon. On the other hand, the entropy entanglement between the 

black hole and the radiation for observer A increases steadily, which contradicts Page's theory, 

since he only can measure the entropy entanglement after Half of the black hole is evaporated.  [19]  

ER = EPR. ER = EPR, (Einstein-Podolski-Rosen paradox) and wormholes (also known as 

Einstein-Rosen bridges) states that Hawking pairs are related through wormholes and therefore are 

not independent systems, allowing them to interact with each other. ER = EPR does not rule out 

the existence of firewalls, but states that if it can be shown that the Einstein-Rosen Bridge 

connecting the black hole to its radiation is smooth near the black hole, then there would be no 

firewall.  [20] 
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Research Project: Thermodynamics of a Black Hole (PDF) 

 

Abstract: 

In this project, I worked on mathematical derivation on important results of classical black hole 

thermodynamics, for example the area increase theorem in the second law, Bardeen-Carter-

Hawking formulation in second law, zeroth law and third law in the end. We have seen that three 

laws of thermodynamics are similar to four laws of thermodynamics:  

 Zeroth law states that surface gravity is constant throughout the event horizon of a 

stationary black hole. (Surface gravity similar to temperature) 

 First law is an energy conservation statement which gives a formula for the change in black 

hole’s mass.  

 For the second law we discussed how Bekenstein found his famous formula that a black 

hole’s entropy is proportional to the event horizon area and the generalized second law of 

thermodynamics which is the sum of black hole’s entropy and entropy in universe will 

never decrease 

 In third law, states that surface gravity cannot be reduced to zero by any infinite sequence 

of operations similar to Nernst equation. 

After that I studied how classical black hole thermodynamics is not complete. The reason for 

this is that black holes that are described completely by general relativity, do not radiate and their 

temperature is absolute zero. Following that, using semi classical WKB technique we saw that 

black holes can radiate (this result is also discussed in my other research project (Hawking 

Radiation and Quantum Tunneling)). This happens because of the non-zero thermodynamic 

temperature that they have which is proportional to their surface gravity, which means that the 

radiation is described through tunneling effect and is not completely thermal as Hawking 

previously had thought.  

 

 

 

 

 

 

 

 

 

https://a0d6a29e-3b27-4ed9-bdbb-7e51f56dd30f.filesusr.com/ugd/546493_d523e20651784fefbb38143dd407a815.pdf
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Research Project: Hawking Radiation as Quantum Tunneling (PDF) 

 

Abstract: 

In this project, I started from Einstein field equation and Schwarzschild solution. Then 

introduced Eddington-Finkelstein coordinates which was a better coordinate for studies near and 

through the event horizon. Using the WKB method, we explained how particles tunnel and we 

found a rate of tunneling which in massless self-gravitating shells gives: 

Γ ∝ 𝑒−
8𝜋𝐸𝑀
ℏ

 (1−
𝐸
2𝑀
)
 

For small E we found the temperature to be: 

𝑇 =
ℏ𝑐3

8𝜋𝑘𝐵𝐺𝑀
 

Which matches with what Hawking had predicted. So it seems that tunneling through horizon is a 

reasonable process.  

One other process I researched about was information loss during this process. Since all 

the particles can enter the black hole, we have a finite amount of energy coming inside the system. 

But if the black hole radiates thermally, a large portion of the information will be destroyed. But 

this is true if and only if it is thermal radiation. If its thermal we should have a Boltzmann factor 

of 𝑒−𝛽𝐸. But in our calculations we found that we have an extra term of 1 − 
𝐸

2𝑀
. This is enough 

to tell us that the radiation is not purely thermal, thus it contains information about the main 

particle. This shows that the black hole can radiate and lose no information. 

 

 

 

 

 

 

 

 

 

 

https://a0d6a29e-3b27-4ed9-bdbb-7e51f56dd30f.filesusr.com/ugd/546493_7d6ffb51774b4032bb4f388761e1d028.pdf
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Research Project: Information and Entropy (PDF) 

 

Abstract: 

In this relatively short project, I researched on the nature of black hole entropy. Entropy 

can be a part of its thermodynamics since we have seen that black holes’ thermodynamic 

temperature is not zero. I studied that how black holes have negative heat capacity which means 

that when matters fall inside a black hole, it will get colder, and as result it will not get to a thermal 

equilibrium. This can hinder our definition of thermodynamic entropy; because if we want to relate 

entropy of a black hole to thermodynamics, we need to have a thermal equilibrium.  

To solve this problem, we needed a new definition for entropy which could also be true for 

non-equilibrium, which was von Neumann entropy which has a classical analog known as Shannon 

entropy. I also studied that how entropy is basically measuring how much we do not know about 

a system.  

Following this, I examined what would happen to a harmonic oscillator falling into a black 

hole and noted that second law holds and the increase of black hole entropy is bigger than Shannon 

entropy of the oscillator. This result showed that inserting Shannon (von Neumann) Entropy in 

second law, for a generalized second law is a reasonable decision. 

After this part, I briefly studied some of the theories that have been made for identifying 

the degrees of freedom responsible for black hole entropy, Information paradox, and entropy 

bounds. Finally, I focused I briefly looked at two ideas; entropy and black hole stability, and 

thermodynamic description of interaction between the black hole and matter.  

 

 

 

 

 

 

 

 

 

 

 

https://a0d6a29e-3b27-4ed9-bdbb-7e51f56dd30f.filesusr.com/ugd/546493_bc85ac9126b94c3abb730e82782d0a74.pdf
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Research Project: Understanding Spin through Symmetries (PDF) 

 

Abstract: 

 In this project, I studied how symmetries are important in Physics. Starting from showing 

that action S for a point particle under Poincare transformation is invariant. Then I derived the 

relativistic action, using relativistic distance ds, between ta and tb. By applying nonrelativistic 

limit and setting it equal to the nonrelativistic action we found that: 

(1) 
𝑆 = −𝑚∫ √𝑥̇2ⅆ𝑡

𝑡𝑏

𝑡𝑎

 

 

 

I also showed that the same also applies for the equations of motion; the nonrelativistic 

limit of the equations of motion for relativistic action, must be equal to nonrelativistic equations 

of motion.  

Noether’s theorem states that there is a conserved quantity for every symmetry that exists. 

I studied Noether’s theorem in field theory and found that Noether’s current, jμ, and Noether 

charge, Q, are invariant if and only if the Lagrangian density, ℒ, is symmetric under a 

transformation in 4-vector 𝑥μ and field 𝜙 

(2) 
jμ =

𝜕ℒ

𝜕(𝜕μ𝜙𝑘)
𝜂𝑘 − 𝑇

𝜇𝜈𝜉𝜈 

𝑄 = ∫ⅆ3𝑥̅𝑗0 

 

 

𝑇𝜇𝜈 is energy-momentum tensor, 𝜂𝑘 are infinitesimal generators for transformation in the 

field 𝜙, 𝜉μ  infinitesimal generator for the four-vector xμ. Using equation 2, we got to a modified 

Noether current, 𝒥μ,𝜈𝜌, which is known as total angular momentum density, and the total angular 

momentum j𝜈𝜌 Noether charge for 𝒥μ,𝜈𝜌, which means that it will be invariant under Lorentz 

transformation. However, we showed that it is not invariant under translation, and so it is not 

invariant under all Poincare transformation, so we introduced Pauli-Lubanski spin vector: 

(3) 
Wµ ≔

1

2
𝜖𝜇𝜈𝜌𝜎𝐽

𝜈𝜌𝑃𝜎 

 

 

I showed that Pauli-Lubanski spin is invariant under Poincare group transformation, moreover in 

a particle’s rest of frame, it is proportional to the total angular momentum.  

Then Casmir operator, W2, was introduced. If 𝛹 represents physical states and s, spin 

quantum number we will have: 

(4) W2𝛹 = 𝑚2𝑠(𝑠 + 1)𝛹 
 

 

https://a0d6a29e-3b27-4ed9-bdbb-7e51f56dd30f.filesusr.com/ugd/546493_4d6c1be76a8249e0af4d8070f94c81b0.pdf
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Since W2 is as spin of a particle in quantum field theory, and in a particle’s rest of frame 

is proportional to the total angular momentum, equation 3 will be as a spin of a particle in classical 

field theory. 

Next using reparametrization I fixed an invariance gauge for classical bosonic string. After 

one string dimension and embedding dimension were compactified, we got the action for a bosonic 

rigid particle (m is the mass, 𝛼 is the rigidity) 

(5) 
𝑆 = −

1

2
∫ⅆ𝜏 √−𝑥̇2 (𝑚 +

1

−𝛼𝑥̇2
[𝑥̇2𝑦2 + 2𝑥̇𝑦̇ − (𝑥̇𝑦̇)2]) 

 

 

equation 5 describes a relativistic bosonic rigid particle because can be written as: 

 

(6) 
𝑆 = ∫ⅆ𝜏 √−𝑥̇2 (𝑚 + 𝛼−1𝑘2) 

 

 

Where 𝑘 is the extrinsic curvature. We saw that equation 5 is an action for a smooth 

spinning particle with only integer spin. For half-integer one should study supersymmetry.  


