Inferring Halo Gas Fractions with Mock X-ray Observations of Cosmological Hydrodynamical Simulations

Why do we care about gas fraction?

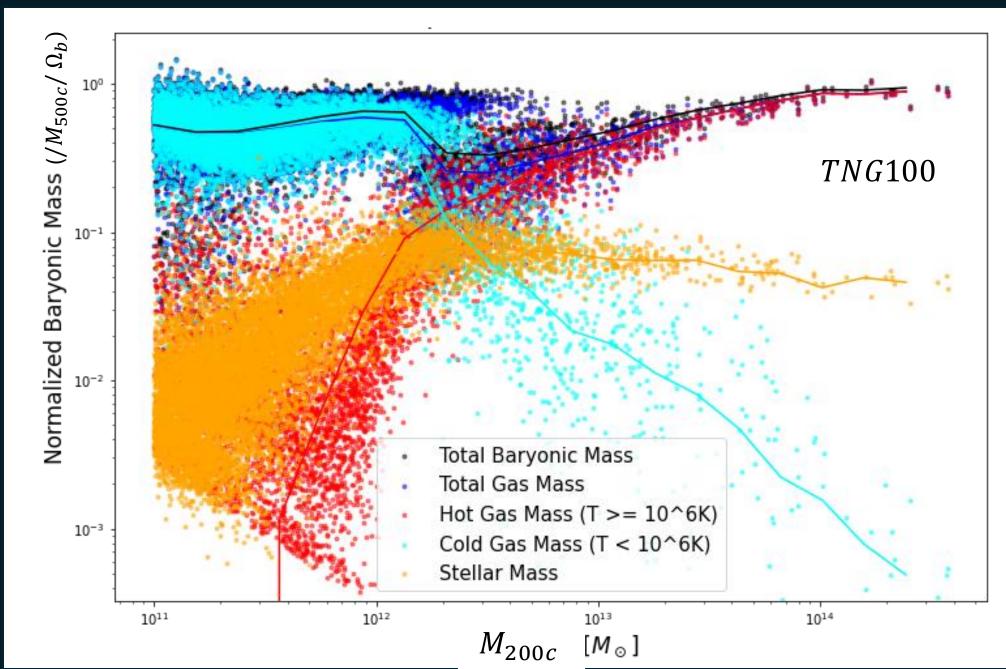
```
One reason is: Missing Baryon Problem In a flat Universe: \Omega_{DM} + \Omega_{\Lambda} + \Omega_{baryon} = 1 26% 69.2% 4.8%
```

Then DM is $^{85\%}$ of all matter , and baryons are $^{15\%}$

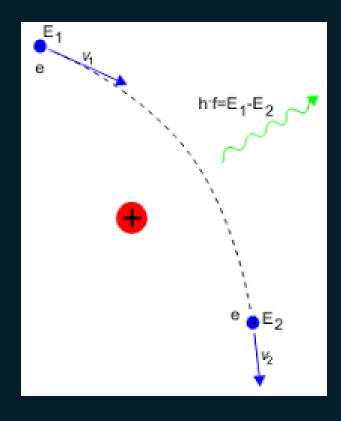
Total mass of the MW: $^{\sim}1 \cdot 10^{12}~M_{\odot}$ Total mass of stars and gas: $^{\sim}5 \cdot 10^{10}~M_{\odot}$ Expected mass of stars and gas: $^{\sim}15 \cdot 10^{10}~M_{\odot}$ Fraction of collapsed baryons: 5% / 15% = 1/3.

2/3 of baryons outside of collapsed halos -> "Missing baryons"

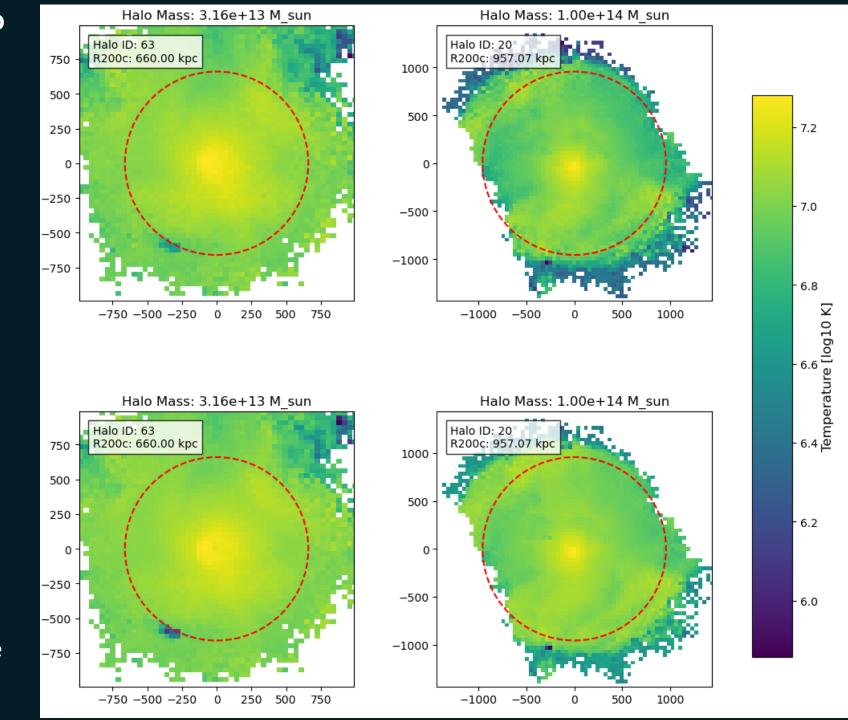
Stars, BHs, cold and hot gas?



Hot Gas; How to Detect? X-ray; Bremstrehlung



Mass Weighted Temperature
X-Ray Luminosity Weighted Temperature



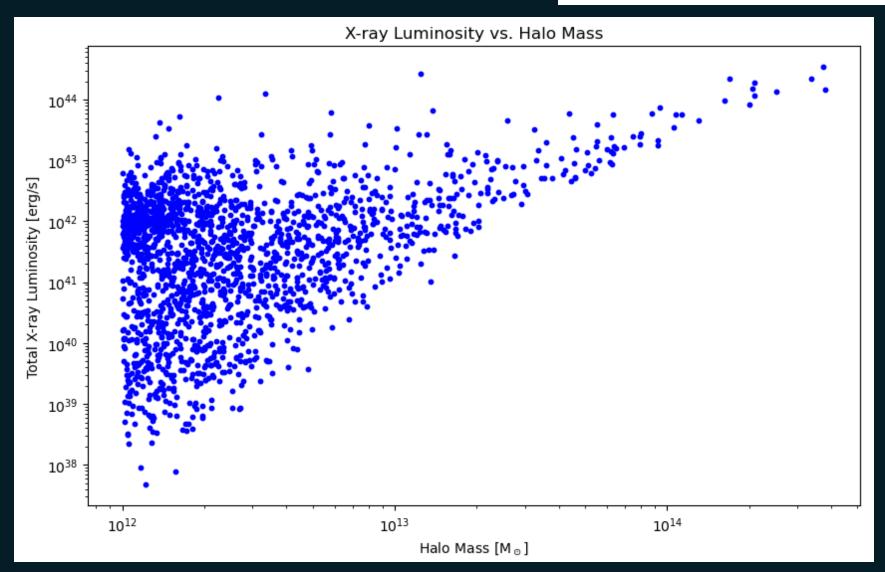
How to measure X-Ray Luminosity? Navarro et al. (1995)

$$L_X = 1.2 \times 10^{-24} (\mu m_p)^{-2} m_g \sum_{i=1}^{N_{gas}} \rho_i T_i^{1/2} \text{ erg s}^{-1}$$

- $\mu = 0.6$ for a fully ionized gas
- m_g : Mass of a gas cell
- ρ_i , T_i : Density and temperature at the position of the i-th cell

Navarro et al. (1995)

$$L_X = 1.2 \times 10^{-24} (\mu m_p)^{-2} m_g \sum_{i=1}^{N_{gas}} \rho_i T_i^{1/2} \text{ erg s}^{-1}$$



Observational Paper:

Baryon content in a sample of 91 galaxy clusters selected by the South Pole Telescope at 0.2 < z < 1.25

I. Chiu,^{1,2,3}★ J. J. Mohr,^{2,3,4}★ M. McDonald,⁵★ S. Bocquet,⁶ S. Desai,⁷ M. Klein,^{2,4}

Cluster Sample:

- SPT-SZ 2500 deg² survey (Bleem et al. 2015)
- Includes **91 galaxy clusters** at 0.25<z<1.25 with SZE detection significance ξ >6.8
- Later followed by Chandra X-Ray observations

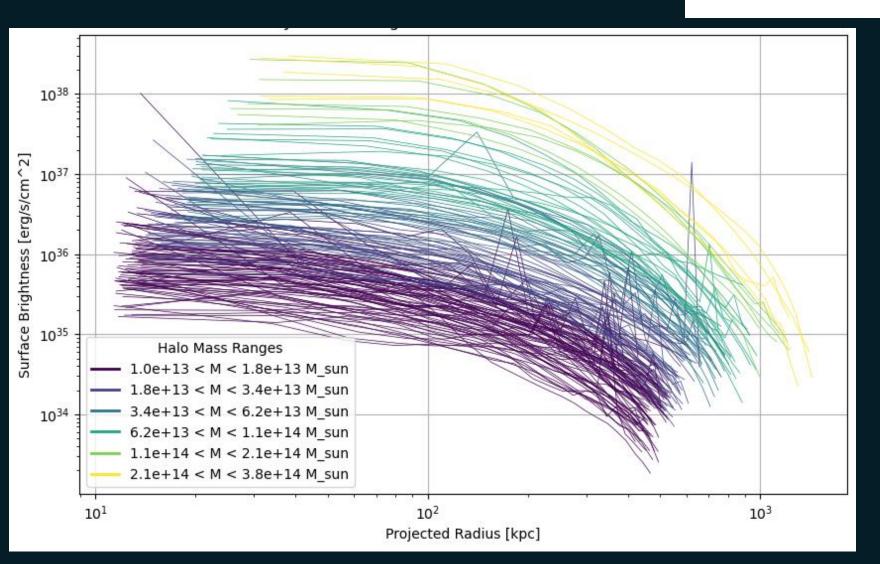
Halo Mass (M_{500}) : SZE scaling relation from the SPT Collaboration

Mass of the ICM (M_{ICM}) :

- Clusters imaged through the Chandra XVP program
- Surface Brightness profile extracted extending to $1.5\,R_{500}$
- Fitting surface brightness profile using projected β-model along the line of sight
- Integrating the Fitted profile to R_{500}
- R_{500} is based on the SZE Halo mass

1- Surface Brightness Profile

$$S(R) = \frac{L_X}{\pi \left[(R + \delta R)^2 - R^2 \right]}$$



$$EM(r) = (1+z)^4 \frac{S(R)}{\Lambda(T,z)}.$$

2- Emissivity (Kay & Pratt 2022)

3- Modified Beta Model (McDonald et al. 2013)

$$n_{e}n_{p} = n_{0}^{2} \frac{\left(\frac{r}{r_{c}}\right)^{-\alpha}}{\left(1 + \frac{r^{2}}{r_{c}^{2}}\right)^{3\beta - \frac{\alpha}{2}} \left(1 + \frac{r^{3}}{r_{s}^{3}}\right)^{-\frac{\epsilon}{3}}}$$

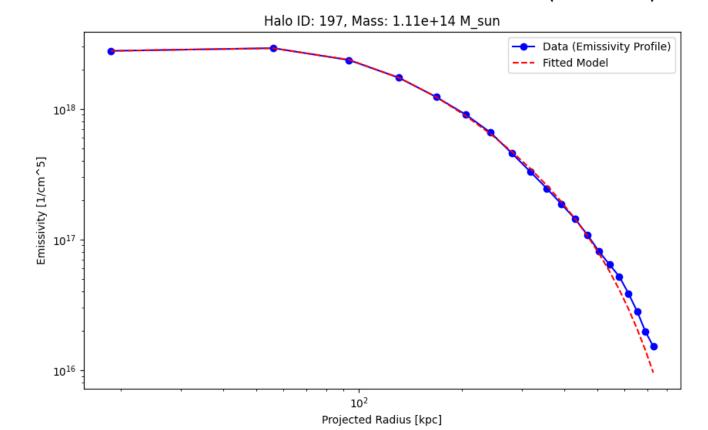
$$\int_{0}^{2r_{vir}} n_e^2 dl = \int_{0}^{2r_{vir}} n_0^2 \frac{\left(\frac{r}{r_c}\right)^{-\alpha}}{\left(1 + \frac{r^2}{r_c^2}\right)^{3\beta - \frac{\alpha}{2}} \left(1 + \frac{r^3}{r_s^3}\right)^{-\frac{\epsilon}{3}}} dl$$

$$A = 1.397$$
 and $Z = 1.199$.
 $\rho_g = m_p n_e A/Z$
 $n_e = Z n_p$

3- Modified Beta Model (McDonald et al. 2013)

$$EM(r) = (1+z)^4 \frac{S(R)}{\Lambda(T,z)}.$$

$$\int_{0}^{2r_{vir}} n_{e}^{2} dl = \int_{0}^{2r_{vir}} \frac{\binom{r}{r_{c}}^{-\alpha}}{\left(1 + \frac{r^{2}}{r_{c}^{2}}\right)^{3\beta - \frac{\alpha}{2}}} dl \left(1 + \frac{r^{3}}{r_{s}^{3}}\right)^{-\frac{\epsilon}{3}} dl$$

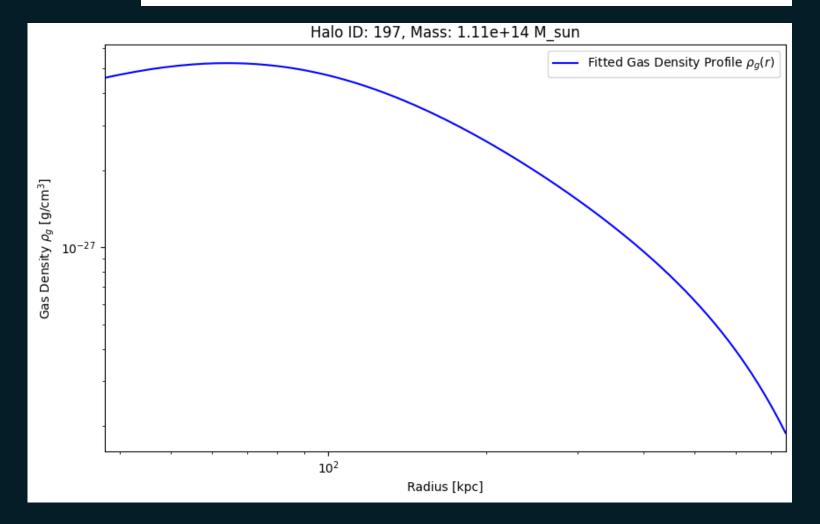


$$r = \sqrt{R^2 + l^2}$$

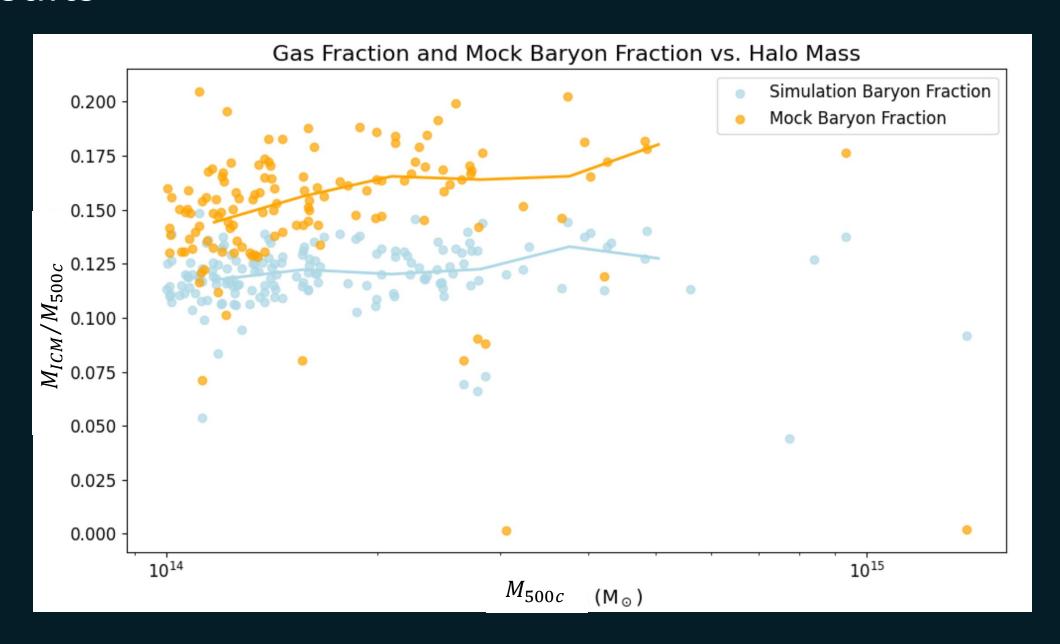
4- Calculate Density with the Optimal parameters

5- Integrate the gas density profile over the radial range from 0 to R500 to get the mass of the ICM

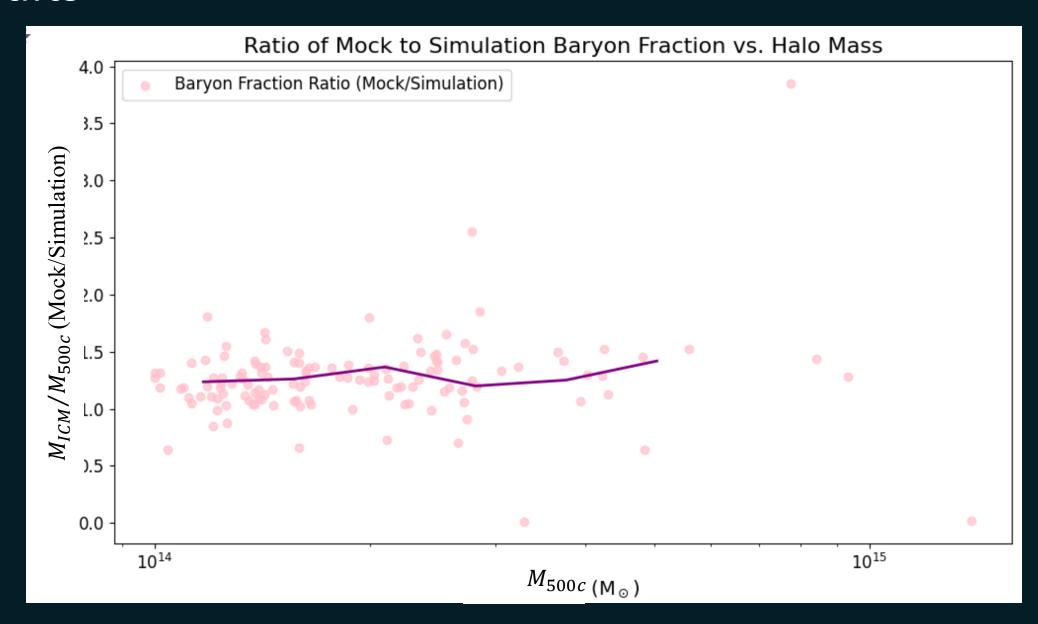
$$\rho_g^2(r) = \frac{n_0^2 A^2 m_p^2}{Z} \frac{\left(\frac{r}{r_c}\right)^{-\alpha}}{\left(1 + \frac{r^2}{r_c^2}\right)^{3\beta - \frac{\alpha}{2}} \left(1 + \frac{r^3}{r_s^3}\right)^{-\frac{\epsilon}{3}}}$$



Results



Results



Results

