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ABSTRACT

Context. Integrates approaches combining theoretical models, simulation, and observational data covering the complex dynamics of
spiral structures in galaxies.

Aims. This study aims to investigate the dynamics of spiral structures in galaxies, focusing on three primary mechanisms: swing
amplification, tidal interactions, and bar interactions. By exploring these mechanisms, the study seeks to elucidate the formation
of spiral arms, the persistence and lifetime of spiral arms, and the classification of galaxies and their morphologies in each of the
mechanisms.

Methods. The study utilizes a combination of theoretical analysis for the dispersion relations and the stability criterion. Swing ampli-
fication is examined through its role in converting leading density waves into trailing ones, amplified by resonance at the corotation
radius theoretically, and further compared to the simulation results of Toomre (1981). Tidal interactions are studied using the paper
and the N-body simulations of Semczuk et al. (2017) to model the effects of gravitational interactions with nearby satellite galaxies
through repeated cycles. Bar interactions are explored through hydrodynamical simulations of Huntley et al. (1978) that investigate
the response of gas to bar-like perturbations, highlighting the alignment of spiral structures with the bar’s rotation.

Results. The study finds that swing amplification is one of the best explanations for the formation of transient, multi-armed, or grand-
design spiral patterns, and it is facilitated by differential rotation and self-gravity within the galactic disk. Tidal interactions are also
very effective in producing grand-design spiral structures, going through repeated close encounters with the satellite galaxy. This can
further explain the presence of grand-design spirals in the universe despite their transient nature. Bar-driven spirals are confirmed
to align closely with the bar’s rotation pattern, contributing to the formation of well-defined bisymmetric spiral arms, and they are
believed to be long-lived. Observations, such as radial mixing and gas presence in spirals support the transient picture in spirals, and
simulations also develop transient multi-armed spirals if exposed to higher sectoral harmonics. The study also highlights the impor-
tance of various theoretical topics such as Lindblad resonances, corotation resonances, and dispersion relations in the propagation and
amplification of spiral density waves.

Conclusions. Even with the observational discrepancies in each of the tidal and bar-driven spirals, they remain the main process for
grand-design galaxies with nearby satellites, and barred grand-design galaxies. The study finds swing amplification to be the main
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process for the formation of transient, grand-design or multi-armed spiral patterns.

Key words. spiral structure - swing amplification - bar driven spirals - tidally driven spirals

1. Introduction

Spiral galaxies are the predominant galaxy type in the local uni-
verse, with around two-thirds of all galaxies being spirals (Sem-
czuk et al. 2017). The first classification of the spiral galaxy was
Hubble (1926) classifying them from SO/Sa for early-type galax-
ies, to Sb/Sc for late-type galaxies. Hubble’s classification was
based on their color; calling redder galaxies early type and bluer
galaxies as late type, which is no longer correct. It also does not
include all the ways that spiral galaxies are different from each
other. The spiral arms also exhibit diverse morphologies charac-
terized by the number of arms, leading to classifications ranging
from the well-defined "grand design" or two-armed spirals to the
more fragmented multi-armed and "flocculent” spirals (Sellwood
& Masters 2022).

The appearance of spiral arms in galaxies is also significantly
influenced by the wavelength of observation, with older stars
emitting more light in red and infrared (IR) bands, making red
and near-infrared (NIR) images more reflective of the underly-
ing stellar population, while younger, brighter stars dominate im-
ages in bluer bands. Consequently, spiral arms appear smoother
and more continuous in NIR images. The Spitzer Survey of Stel-

lar Structure in Galaxies (S4G) revealed that galaxies appearing
flocculent in optical light often maintain this structure in mid-
infrared (MIR) observations, though some flocculent galaxies in
blue light exhibit underlying grand design spirals in NIR images
(Sellwood & Masters 2022). Buta et al. (2015) confirmed that
MIR classifications of most spiral galaxies align with B-band
images, albeit with slightly earlier Hubble-type classifications
due to more prominent bulges in MIR.

Few mechanisms can be responsible for producing spiral
arms, as I will cover the 3 most important ones in this paper,
namely: Swing Amplification, Tidal, and Bar interactions. Each
of these theories are successful in explaining certain character-
istics of spirals, and they all have different lifetime (Sellwood
2011).

This paper will first talk about the nature of spiral arms and
then will go over some fundamental tools that we will be needing
for explaining some of the theories. After covering the three the-
ories for the spiral arms formation, it will further be discussed
whether the spiral patterns are transient or long-lasting (quasi-
stationary).
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Fig. 1. Closed orbits in a galaxy with Q — 7 creating spiral patterns.

Figure adapted from Binney & Tremaine (2008).

2. Spiral Arms: Material Arms or Kinematic Density
Waves?

Differential rotation gives a very easy way to produce spiral
arms, with the stars closer to the center, completing a bigger frac-
tion of the orbit compared to the outer stars in the same amount
of time. However, if the arms are purely material arms, the arms
should wind up and the structure will disappear. The other prob-
lem that this can bring is over time, differential rotation can cause
many turns while in observations, most of the galaxies don’t have
more than two turns (Toomre 1977).

On the other hand, we can think of spiral structures as kine-
matic density waves. In the kinematic density waves, the gas and
stars flow through them but not with a constant pattern speed
(which is characteristic of material arms), but their pattern speed
decreases as the radius increases. When they are perturbed, they
induce elliptical stellar orbits, which are generally not closed.
By picking a rotating frame that is closed after each time we en-
counter a spiral arm, or in other words, after «/m, we can create
a closed orbit. Setting m = 2 and assuming that - 4 is constant,
we can have what we can see in Figure (1) panel a, and by rotat-
ing the axes of the ellipse, we can create leading or trailing spiral
density waves in figure (1) panel b and c respectively (Binney &
Tremaine 2008).

However, in real galaxies Q — g 1S not constant, so orbits are
not exactly closed. Binney & Tremaine (2008) concluded that for
galaxies with similar circular speed curve like the Milky Way
galaxy, density waves unwind slower than material arms. This
also can be one explanation for grand-design spirals being the
most common type among spiral galaxies.

3. Preliminaries

Before starting to go over the main theories in the spiral struc-
ture, a brief introduction on some of the fundamental topics that
are wildly used in spiral dynamics shall be given. Firstly the dis-
persion relations derived by Lin & Shu (1966a) and the hypoth-
esizes used to derive that will be discussed. Further Lin-Shu dis-
persion relation shall be compared to the Lin-Shu-Kalnajs dis-
persion relation, and the stability criterion will be discovered. In
the end, a brief introduction on Lindblad resonances and how the
wave will propagate through them will be given.

3.1. Hypothesis

Lin & Shu (1964) proposed that spiral arms are density waves
rather than material arms, and subsequently derived the disper-
sion relation for a fluid disc. Following that, Lin & Shu (1966b)
and Kalnajs (1965) derived the dispersion relation for a stellar
disk. For the derivation of these dispersion relations, several ap-
proximations and hypotheses were used. In this section, I will
provide a brief review of these assumptions.
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3.1.1. Thin Disc, Linear Perturbation, and Axisymmetric
Responses

The first assumption that is used to simplify the analysis is that
all theoretical models assume a razor-thin disk, which signifi-
cantly reduces the complexity of the calculations. The dynamics
of a smooth stellar fluid are governed by the collision-less Boltz-
mann equation (CBE), which describes the evolution of the dis-
tribution function (DF) of stars, and the Poisson equation, relat-
ing gravitational potential and density distribution. By using the
linear perturbation assumption, they linearized the equations of
continuity, the equation of motion (Euler equation), the equation
of state, and the Poisson equation assuming that the unperturbed
disc is axisymmetric and has no radial motions (Shu 2016; Bin-
ney 2020).

3.1.2. WKB Approximation

WKB approximation, or tight-winding approximation was intro-
duced to help the problem of gravity being a long-range force.
By assuming a small pitch angle, distant perturbations can be
neglected; meaning that matter’s response to gravity is localized
(Shu 2016; Binney & Tremaine 2008).

3.1.3. Quasi Stationary Spiral

The ubiquity of spirals in galaxies led many astronomers to favor
long-lived spiral patterns because they would not require con-
stant regeneration (Sellwood 2011). The quasi-stationary spiral
structure (QSSS) hypothesis suggests that spiral arms are sta-
ble, long-lived features that appear nearly stationary in a rotating
frame of reference, meaning that they rotate with fixed pattern
speed (Shu 2016). This concept is pivotal in understanding the
enduring nature of spiral arms in galaxies, as first proposed by
Lin & Shu (1964). The QSSS hypothesis can be formulated by
considering the gravitational potential in a disk of infinitesimal
thickness. In cylindrical coordinates (r, ¢, z), where the galactic
center is at r = 0, and the mid-plane galactic disk is at z = 0, the
gravitational potential in the mid-plane of the disk can be written
as the sum of a stationary axisymmetric part (which is the bulge,
disk, and halo) and a non-stationary and a non-axisymmetric part
(spiral gravitational perturbation) as (Shu 2016):

V(r, ¢,z =0,1) = Vo(r) + Vi(r)e @9, (D

where V() is the stationary axisymmetric part and V, (r)e/@!~")
is the non-stationary and non-axisymmetric part.

The QSSS hypothesis assumes that spiral perturbations are
small relative to the axisymmetric state, allowing them to be
treated as small oscillations. These perturbations can be Fourier-
analyzed in time and angle (Binney 2020). If w is real, we will
write it as w = m&, — iy, where y is the growth rate. For
vy <« m|Qp| it will lead to the formulation of a nearly station-
ary structure in a rotating frame with pattern angular speed Qp
(Shu 2016).

We will have spirals if the complex radial part has an ampli-
tude and a phase V(r) = A(r)e®"). Trailing and leading spirals
are when the wave number k = @’(r) is negative or positive.
Unequal superposition of trailing and leading spirals causes the
structure to form spirals (Shu 2016).

3.2. Dispersion Relation

Using the 3 hypotheses in the previous section, Lin & Shu (1964)
derived the dispersion relation. The dispersion relation of a stel-
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lar disk can help us understand spiral arms since most of the
mass of the disc is made of stars. However, before getting to
the dispersion relation for stars, I first introduce the dispersion
relation for a fluid disc. The dispersion relation for linear tight
winding perturbation in a thin fluid disc, Lin-Shu (LS) dispersion
relation, is given as (Shu 2016):

(w—mQ)? = i + 2k* = 2nGIk[Zo, )

where c;, Q, « and X, are sound speed, angular frequency,
epicyclic frequency, and surface density respectively, and all of
them are a function of galactic-centric radius R. Also w = mQp
where Qp is the pattern speed (Shu 2016).

In the LS dispersion relation, w is the angular velocity in the
inertial frame, and w — mQ is the angular velocity in a rotating
frame of a star at R. On the right-hand side of this equation, the
first term (k%) is the rotation effect that stabilizes the disk, the
second term expresses the effect of pressure, and while it is pos-
itive, it stabilizes the fluid against perturbation. The last term is
what incorporates the self-gravity of the disc, promoting growth
instabilities (Shu 2016). If the term, —27G|k|Zy becomes large
enough to make the term (w — mQ)? non-negative, the disk will
become unstable. Positive or negative (w — mQ)?> can determine
whether the perturbation is stable or unstable and its amplitude
will grow exponentially (Shu 2016; Toomre 1977). Now using
equation (2) we can derive that:

T G2 Z% K2

2 = 2
Kcs c?

ki _ ﬂ'GZo +

—a (3)

Now setting the term under the square root to zero in equa-
tion (3), we will derive the Toomre’s parameter Q which works
as a criterion for the stability of the disc; for Q > 1, the disc is
stable, and for Q < 1 disc is unstable (Shu 2016):

_ KCy
a ﬂ'GZO.

“

Another stability criterion is a critical wavenumber where the
disk is stable for all the wavenumbers smaller than k. When
(w — mQ)? = 0 for a cold disc (¢, = 0), keie Will be given as
kerit = ﬁ Following that we can state that all perturbations
with wavenumber |k| > k¢ or wavelength 1 < Ay are stable,
where (Shu 2016; Binney & Tremaine 2008):

2
A< A = 2 = G )
ket K2

Kalnajs (1965) found the dispersion relation for the fre-
quency of axisymmetric waves in a 2D stellar disk. He also intro-
duced a new parameter, F', which is a reduction factor taking into
account the weakening of self-gravity by random stellar motion
which depends on Q, k, and w. Specifically, F < 1, with F =1
representing a cold disk that has zero random motion (Q = 0).
For a stable disk, we need w? > 0, which requires F to remain
sufficiently small. The dispersion relation is given by (Toomre
1977; Shu 2016):

w* = K> = 2nGZIk|F. (6)

Lin & Shu (1966b) replaced the frequency with the Doppler-
shifted frequency at which stars encounter an m-fold symmetric
spiral, w—mQ, (Shu 2016). Equating this to Equation (6), we will
find Lin-Shu Kalnajs dispersion relation (LSK) (Toomre 1977;
Shu 2016):

(w - mQ)? = K = 2aGZ|k|F, (7

In general, the behavior of LSK dispersion relation is similar
to LS dispersion for smaller wavenumber, but is different for

larger wavenumbers. For the short wave regime, LSK disper-
(w—mQ)?

sion relation approaches
K

(w—mQ)*

= 1 but LS dispersion relation

approaches > 1. The difference is that for fluids, pres-
sure will become large at smaller wavelength, and on the other
hand, for a collisionless stellar disc this force does not exist, and
frequencies of the perturbations cannot become larger than the
epicyclic frequency « (Binney & Tremaine 2008; Shu 2016).
Toomre’s parameter also would take a different form com-
pared to equation (4) (Toomre 1977; Sellwood & Masters 2022):

3.358Gx S0= OR

K OR crit

> 1.

OR 2 O Rcrit (8)
For a stellar thin disk, the constant 3.358 results from an ex-
act Gaussian velocity distribution. Comparing to equation (4),
we see that the constant 7 is replaced by 3.358, and the sound
speed in the gas is replaced by velocity dispersion o (Sellwood
& Masters 2022; Toomre 1977). For Q > 1, F remains small
enough to ensure that w? > 0, and therefor maintaining disk sta-
bility. while for Q < 1 we can have the formation of spirals (Shu
2016; Sellwood & Masters 2022). There also is a forbidden area
around the vicinity of the CR; it is a region where the disk has
a large Q, but the dispersion relation has no real solution, where
due to pressure and random motions the density waves diminish
(Binney & Tremaine 2008).

3.3. Propagation of The Waves

So far we have talked about waves being quasi-stationary, how-
ever, it is not very realistic and a wave would propagate radially
with some group velocity once induced in a disk. The group ve-
locity in a fluid using LS dispersion relation can be derived to be
(Shu 2016; Binney & Tremaine 2008):

ow
ok
with negative and positive signs showing leading or trailing spi-
ral. 2k — nGZ is positive for short wavelength and negative
for long wavelengths, and also w — m€ is negative and positive
for R smaller and larger than Corotation radius (CR). Binney &
Tremaine (2008) graphed the relation between wavenumber and
radius in a stellar disc with Q = 1.2 in Figure (2). When the
group velocity is positive it propagates outwards and vice-versa,
and it changes its direction once it hits the forbidden regions. In
figure (2) We can see that, short-leading and long-trailing spirals
will approach the CR, while short-trailing and long-leading spi-
rals will move away from the CR (Binney & Tremaine 2008).
We also can see that it will change its direction once it hits the
forbidden regions.

The behavior of the wave around inner and outer Lindblad
resonance (ILR and OLR) can also further be noted. Long stel-
lar density waves (klﬂl < 1) are reflected at Lindblad resonances

Xkl — nGZy
w — m&

=+

; ©))

and short waves (kli,l( > 1) will be absorbed due to Landau damp-
ing (Binney & Tremaine 2008). This way, both long and stellar
density waves cannot pass the Lindblad resonances, so the re-
gion for stellar density waves is restricted between the ILR and
OLR (Shu 2016).

As the density wave packet travels inward, it becomes more
tightly wrapped and eventually absorbed. All the stars in a disk
experience a force as the wave passes over them, but their orbits
typically change adiabatically. Lindblad resonance occurs when
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Fig. 2. Propagation diagram for tight-winding stellar density waves fol-
lowing the LSK dispersion relation, for m = 2, in a stellar disk with
Q = 1.2. The Horizontal dashed lines are the inner Linblad resonance
at R = 0.293Rcx and outer Linblad resonance at R = 1.707R¢x (Binney
& Tremaine 2008).

the forcing frequency w — mQ = =*«, with the negative sign be-
ing ILR, where stars overtake the wave, and the positive sign for
OLR, where the wave overtakes the stars. At these resonances,
ILR can absorb short leading density waves, leading to a concen-
tration of material that forms an inner spiral structure, and sim-
ilarly, and OLR, density waves get reflected that help maintain
the outer spiral arms (Binney & Tremaine 2008; Toomre 1977).
The corotation radius similarly represents the location where the
spiral pattern speed equals the local rotational velocity of the
disc. At this radius, stars co-rotate with the spiral pattern and en-
hance the structure with their interaction with the density wave
(Goldreich & Tremaine 1978).

4. Spiral Structure Theory
4.1. Swing Amplification

Swing amplification is the mechanism that is crucial in the for-
mation of spiral structures in galaxies. Swing amplification was
first proposed by Goldreich & Lynden-Bell (1965) and further
developed by Toomre (1981). It operates by converting leading
density waves into trailing waves, and amplifying them signif-
icantly as they cross CR (Toomre 1981; Sellwood & Masters
2022).

Swing amplification relies on shearing flows, epicyclic mo-
tions, and the self-gravity of the disc (Binney 2020). The pro-
cess begins with a small short leading perturbation in the den-
sity of the galactic disc. In a galactic disc, inner regions rotate
faster than outer regions, which is called differential rotation
(Shu 2016). Small density fluctuations in the disk, create ini-
tial disturbances, and as the disc rotates, these disturbances are
sheared, by the inner parts of the disturbance moving faster than
the outer parts, which results in a trailing pattern (Binney 2020).
So it can be said that as the leading perturbation moves through
the disc, the spiral pattern winds up, which stretches the pertur-

Article number, page 4 of 10

bation into a trailing pattern. This process so far is the "swing"
part of the swing amplification (Toomre 1981; Sellwood & Mas-
ters 2022).

Stars in a galactic disc follow epicycles, and it’s in the same
direction as the spiral arms are being sheared by differential ro-
tation. During the transition from leading to trailing, as the lead-
ing wave gets stretched, it moves through the disc and eventually
reaches the CR. At the CR, because the pattern speed of the spi-
ral wave matches the angular rotation speed of the stars, their or-
bital frequencies match, and they resonate with each other. This
resonance amplifies the wave and will increase its density con-
trast, and this is the amplification part. After passing through
CR, the wave continues shearing and transforms into an am-
plified trailing wave. This amplified wave can maintain its en-
hanced density and sustain the spiral structure over a longer pe-
riod (Toomre 1981; Sellwood & Masters 2022).

The self-gravity of the galactic disc can also help amplifica-
tion of density waves. As the leading perturbation is stretched
into a trailing one, its self-gravity helps to increase the density
contrast even further. This self-gravitating amplification is essen-
tial for maintaining the spiral structure over time, particularly in
regions where the mass of the disc is significant relative to the
total mass supporting the galaxy’s rotation curve (Binney 2020;
Toomre 1981).

As the amplified trailing wave propagates through the disk,
it can induce new perturbations through its interaction with the
gas and stars. Additionally, it also can create local gravitational
instability and density variations leading to the formation of new
leading waves. These new waves will go through the same pro-
cess, and this creates a feedback loop where new perturbations
continually get amplified as they pass through the corotation ra-
dius (Binney 2020; Shu 2016).

Sellwood & Carlberg (2014) identified that due to the reso-
nant absorption at Lindblad resonances (which was previously
explained in the swing amplification section), permanently mod-
ifying the DF is permanently modified because this absorption
creates steep gradients in the DF around the resonance. The gra-
dient will act as barriers that reflect subsequent waves, and when
a swing-amplified wave encounters this modified DF, it is par-
tially reflected back towards corotation and undergoes further
amplification. This feedback loop increases the prominence of
the wave, progressively modifying the DF more strongly with
each cycle (Binney 2020).

In the next paragraphs, I will introduce a mathematical
framework that lead to the two dimensionless parameters, that
were introduced by Toomre (1981). In a local region away from
the center, the curvature can be ignored and the equation of mo-
tion in the radial and rotational direction of galaxies will be writ-
ten as (Toomre 1981):

X —2Q0y — 4QpApx = gsinvy, (10)

(11)

Where x = R — Ry, y = Ro(¢ — Qot), and Ag = %Ro(ji;)o is
the Oort’s constant at Ry. y is also the angle between the spiral
arm and the radial direction of the galaxy, where negative and
positive correspond to leading or trailing structures.

Then by using normal displacements of stars, & = xsiny +
ycos?y Toomre (1981) found:

¥+ 2Qpx = gcosy,

E+S(E=0 (12)
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Fig. 3. evolution of a leading wave packet with m = 2 in a disk with
Q = 1.5, X = 2, and a reduced surface density of 0.5. Numbers indicate
the time sequence. Abbreviations: CR, corotation resonance, ILR/OLR:
Inner/outer Lindblad resonance. Figure adapted from Toomre (1981).

where S is the spring rate and is given as:

S(y) = & — 8QpAg cos® y + 12A] cos* y — 2nGEokF (13)
= (1 - 22_1"F cos’y + gzlizr costy — g secy|k*  (14)

and I" and X are defined as:

r= -%, (15)

x =t h’g—;m (16)

The effectiveness of swing amplification is often described
using the dimensionless parameter X, which characterizes the
extent of the perturbation’s interaction with the disc’s differential
rotation. Swing amplification happens the most effectively when
X varies between 1 and 2 (Sellwood & Masters 2022; Toomre
1981). T is also the shear rate of the disk, and usually varies
from 0 which is a uniform rotation, to 1.5 for a Kepler potential.
I' = 1 also indicates a flat rotation curve. One immediate result
we can see here, for I' = 0, galaxy is a rigid body and the spring
rate is always positive, meaning that spiral arms don’t amplify.
We can conclude that swing amplification cannot work without
differential rotation. (Sellwood & Masters 2022; Toomre 1981).

Toomre (1981) utilized linear perturbation theory to study
the numerical evolution of a leading wave packet with m = 2 in
a disk characterized by Q = 1.5, X = 2, and a reduced surface
density of 0.5 meaning that only half of the central gravitational
attraction comes from the disk, while a rigid halo contributes the

other half. Their result is illustrated in Figure (3), which demon-
strates what has been discussed so far: Initially, the wave is in
a leading configuration, but as time progresses, it unwinds and
transitions into a more open pattern (as in frame 3). Eventually,
the wave becomes a trailing pattern that increasingly winds more
tightly (shown in frame 9). There also is a significant amplifica-
tion of the wave amplitude, so that the trailing wave in frame 9
exhibits an amplitude approximately twenty times greater than
that of the initial leading wave in frame 1. Intermediate frames
(4, 5, and 6) display even stronger transient spiral patterns, high-
lighting the amplification process (Binney & Tremaine 2008).

The swing amplification phenomenon is not accounted for
by the WKB approximation ( I will elaborate on this further in
the next section). In the Mestel disk scenario, the rate of change
of the pitch angle of the wave is given by the equation:

dQ
ta = —Rt— = 2At,
cota TR

da = oA . (18)
dt 1 +4A2%72
Where, A is the Oort’s constant at radius R. When the arm is
tightly wound, its rotation rate (‘fl—f) is slow, however, as the arm
swings from leading to trailing, the rotation rate reaches a max-
imum value of 2A = Q. This value is comparable to the aver-
age angular speed of stars around their epicycles, x, which in a
Mestel disk is equal to V2Q. This synchronization enhances the
gravitational interaction between the spiral and the stars, leading
to the observed amplification (Binney & Tremaine 2008).

The number of dominating spiral arms in simulation, using
equation (16), and setting X ~ 2 (which is fair for an effective
swing amplification), can be estimated to be:

7)

K°R
m = .
47 GZQ

Swing amplification can be extended to explain multi-armed
spirals and is not exclusive to grand-design spirals. Several nu-
merical simulations have been instrumental in demonstrating the
effectiveness of swing amplification in forming spiral structures.
Simulations by Sellwood & Carlberg (1984) and subsequent
studies have shown that spiral arms formed through swing ampli-
fication are transient but recurrent features, continuously form-
ing, dissipating, and reforming due to the ongoing interaction of
density waves with the disc’s differential rotation (Sellwood &
Masters 2022).

19)

4.1.1. Shearing Sheet Spirals

Having explored the concept of swing amplification, we now
turn our attention to shearing sheet theory which offers a comple-
mentary perspective to swing amplification. As the wave packet
is traveling away from the Lindblad resonances toward CR, it un-
winds as it goes, and eventually, the tight winding approximation
on which LSK dispersion is built on fails, and that will be when
we need to use the shearing sheet. Shearing sheet theory provides
a local frame to analyze the behavior of density waves within a
small rectangular patch of the galactic disk (Binney 2020).
Binney (2020) rederives the results from analysis of the
shearing sheet and swing amplification of Julian and Toomre
(JT) and using the axisymmetric limit of the shearing sheet,
redrives the LSK dispersion relation and Toomres stability crite-
rion that was discussed in the Dispersion Relation section. They
use (x, y) as the center of their patch where x is the radial coordi-
nate (where R + x is a general radius), and y = R¢ where ¢ is the
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angle between the patch’s center and the point (x,y). By using
the Lagrangian of the rotating frame, they read the momentum
and find the Hamiltonian. Then they find two constant of motion,
and extend the constant Q2 (which is the frequency of our patch)
above to r = R + x, writing ® and H as (Binney 2020):

1

O(R + x) ~ D(R) + RO*x + 5Q(Q —4A)x, (20)
1, s 2y _ Ao

H, = pr+5(x—x) Hy = EA} (29

where A, = p, — RQ ~ 2Qx + y, A is the first Oort’s constant,
B = A — Qs the second oort’s constant, and k> = 4Q(Q — A) =
—4QB.

If the pattern is shearing with particles on a circular orbit, we
have a continuous and time-dependant evolution of wave vector
which is against QSSS. By assuming that waves evolve due to
shear, Binney (2020) considered perturbation in the surface den-
sity to be as X (x, 1) = X (f) exp(ik.x), and for a particle on a cir-
cular orbit, k.x is constant at the location of every particle, and
as a result, k has to be a function of time: k(f) = (2At, 1)k,. From
here we can see that in a shearing system, non-axisymmetric
waves must wind up. Binney (2020) then constructed a solution
using this assumption to the linearized CBE.

LSK theory predicts no theory for wave modes near the coro-
tation radius (for Q>1) because of the quasi-stationary assump-
tion breaking down as the wave is winding due to shear. Julian
& Toomre (1966), abbreviated as JT66, provided solution filling
the gap for LSK theory. Semczuk et al. (2017) rederived these
equations, and got similar results as Julian & Toomre (1966) but
with a different normalisation for JT Kernel. The JT equation
derived by Semczuk et al. (2017) reads as:

£1(1) = e f dpsdvy fi

=50+ f kdt' K(t, 1) [Z(t) + 21(1)] (22)

i

Where surface density is £ = X, + Z;, and X, is the external
density that generates an external gravitation field. Z,;(¢) is also
the density at t generated by the initial condition without self-
gravity. And in the end, K(z,¢’) is also named to be the JT Kernel.

JT66 Kernels are not perfect normal modes as one would ex-
perience in electrodynamics since the general JT Kernel is not
invariant under time translation due to the shearing sheet. How-
ever, in the special case of axisymmetric limit, meaning that by
taking the limit of k, — 0 and || — oo, and letting k, = 2Atk,
to be a constant, waves do not wind up and JT is actually normal
modes, identical to the dispersion relation of LSK waves with
m=0.

Binney (2020) wrote the LSK dispersion relation as:

[e]

kcrit — (I’l + 1)2 - 52
_ X wryu =5
k¢ 2 b n+1)

n=—o0o0

0=1 (23)

Where s = ip/«k, and for s2 > 0, if the system crosses the
y = 0, then the system has a mode of frequency s, with the
associated value of & The system is stable and will oscillate
indefinitely if the modes happen only for s> > 0, and Toomre’s
stability criterion Q > 1 can be found by finding the value of o
where the curve crosses y = 0. When the perturbing density has
a small value of ky (k, < 0.5k, there are wavepackets on both
sides of the CR that move inward and outward toward the ILR
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Fig. 4. Overdensity created by a cloud with a Gaussian surface density
located at the origin in a disc with Q = 1.4. The contour values are 2,
1.5, 0.5, 0, and -0.5 times M/(0.114;)?. The zero contours are dashed,
and the negative contours are red. Axes are scaled by the critical wave-
length A.. Figure is adapted from Binney (2020)

and OLR, which is consistent with the LSK dispersion, however,
when perturbing density has a larger value of k,, disc responds
more energetically, and the result is less localized and spreads
out more and not confined to a certain region. In this situation, it
will also decay more rapidly, and this behavior also cannot be ex-
plained by the LSK dispersion relation. The problem lies in the
waves winding up and making k time dependant, which is again,
not included in the LSK dispersion relation (Binney 2020).

An orbiting mass can cause a succession of endless ¢ func-
tion stimuli. By considering a succession of broadband stimuli,
Binney (2020) found that the surface density can be written as:

Mo P24
2 (x) = ———— 24
() =" 24)
Where wavenumbers have an amplitude of:
L. (k) = f dPxe L (x) = M2 (25)

By replacing it into equation (22) he found the perturbation
caused by an orbiting mass:

f
Sk, 1) = f dr K(t,0) [Me A2 4 5y (k. 1) (26)
ti

Any object on a circular orbit in a galactic disc has an effective
mass greater than its actual mass due to the gravitational wake
it generates, which holds for both massive objects like GMCs
and stars with nearly circular orbits. Sundelius (1991) showed
that these enhanced densities (wakes), as can be seen in Figure
(4), are detectable in simulations by stacking images centered on
different stars. The formation of wakes and the resulting effective
mass enhancement accelerates the relaxation of the galactic disc
by increasing Poisson noise (Binney 2020).

Over time the wavepacket becomes less distinct and eventu-
ally fades away. Although the wavepacket fades in real space, its
effects persist in velocity space. As a result, even though the dis-
turbances of shearing sheets have a short lifetime, Gaia mission
can probe the structures at velocity space (Binney 2020).

4.2. Bar Driven Spirals

Barred spiral galaxies are among the most common types of
galaxies, with approximately two-thirds of all spirals having bar
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Fig. 5. photographic representation of gas density in oval (model I) and
prolate (model II) bar-like perturbation. The intensity scale is logarith-
mic. Each photographic square represents one cell of (80 x 80) numeri-
cal grid. Figures adapted from Huntley et al. (1978)

structure, suggesting a potential link between bars and spirals
Huntley et al. (1978). Although the nature of their connection
remains ambiguous, in this section I will go over the paper "Bar-
Driven Spiral Waves in Disk Galaxies” by Huntley et al., which
is one of the earliest papers that studied this topic.

The idea of bar and spiral arms having a common pattern
speed is very intuitive from observation, since most spiral arms
connect to the end of the bars. This idea was supported by hy-
drodynamical simulation such as the one done by Huntley et al.
(1978) where they studied the response of gas to two types of
a steady bar-like perturbation: oval and prolate. The results of
their simulations can be seen in Figure (5). The panels I.qa, I.b,
and /.c are for the oval distortion models but each with different
pattern speeds (£2,) (Huntley et al. 1978):

— Model Ia: Characterized by a low pattern speed, this model
exhibited two inner Lindblad resonances. The resulting gas
bar extended to the outer of these resonances and led the per-
turbing potential by about 45 degrees. The spiral structure
began rather abruptly beyond the second inner resonance and
this sudden formation is due to the resonance condition al-
tering the gas dynamics significantly at these radii, causing a
distinct transition from the bar to the spiral arms

— Model Ib: With an intermediate pattern speed, this model had
only one inner Lindblad resonance. The central gas bar be-
came more aligned with the perturbing potential, and the spi-
ral arms trailed more smoothly from the ends of the gas bar,
indicating a smaller shock.

— Model Ic: Featuring the highest pattern speed, this model had
no inner Lindblad resonance. The gas orbits interior to coro-
tation were aligned along the perturbation axis, resulting in
trailing spiral arms beginning beyond corotation. The shocks
were less pronounced and the alignment was smoother than
the previous 2 models.

The prolate spheroidal model, which is the panel II.d in Fig-
ure (4), demonstrated that the central gas bar resulting from it
had an extremely straight and narrow density maximum. The
gas-density maxima on either side of the disk center were paral-
lel to and offset from the minimum of the perturbing potential.
This alignment suggested that the gas-density maxima led the ro-
tation of the bar-like perturbation with the velocity field in these
models showing a highly elliptical pattern of gas flow.

Bar-driven spirals are believed to be long-lived patterns
(Sellwood 2011) and have no recurrent mechanism. As exam-
ples of barred spirals, one can name nearby galaxies like NGC
1300 and NGC 1365 which have regular bisymmetric spiral
arms connected to the ends of their bars (Sellwood & Mas-
ters 2022). However, research by Speights & Rooke (2016) has
shown that the spirals in NGC 1365 have a lower pattern speed
than the bar, indicating that the bar cannot be the only driven
response. While bar-driven spirals can only account for grand-
design barred galaxies, there are also multiple barred galaxies
that have more than 2 spiral arms, e.g, NGC 2336, and M 83 as
seen in NIR images in NED (Sellwood & Masters 2022). These
two discrepancies, along with the observed spirals without bars,
indicate that bars cannot be the only interaction that can create
the spiral pattern.

4.3. Tidal Driven Spirals

One of the main scenarios in the formation of grand-design spi-
rals is their interaction with a satellite nearby. In this section, I
will review the N-Body simulations performed by Semczuk et al.
(2017), which will further give us insights into this scenario.

The magnitude of tidal perturbation in a galaxy due to an
external body can be quantified by the dimensionless parameter
S, as defined by Elmegreen et al. (1991):

(e (%))
Mg )\ d T
where My, and Ry, are the mass and characteristic size of the
perturbed galaxy, My is mass of the perturber, d is the clos-
est approach distance between the bodies, AT is the interaction

time for the perturber to move one radian around the galaxy, and
T is the time for stars in the galaxy’s outer disk to complete

27)

one radian, expressed as T = (Rgal/GMgal)m. Semczuk et al.
(2017) indicated that spiral arms in galaxies can be triggered by
smaller companions when S ranges between 0.01 and 0.25 Sem-
czuk et al. (2017).

Semczuk et al. (2017) used GADGET-2 N-body simulations
to model a Milky Way-like galaxy orbiting a Virgo-like galaxy
cluster with a Navarro—Frenk—White dark matter halo and an ex-
ponential stellar disk. The galaxy is placed on four different or-
bits with different apocentrtic and pericentric distances but simi-
lar eccentricities, and they tracked the galaxy’s evolution over 10
billion years. The primary focus of them was however on orbit
4, which exhibited the most persistent spiral arms.

The simulations of Semczuk et al. (2017) revealed that the
formation of spiral arms in galaxies is triggered by pericenter
passages, where tidal forces from a cluster cause the stars in the
galaxy’s disk to form tidal tails. These stars remain mostly bound
to the galaxy, and the resulting structure winds inward to create
spiral arms, which dissipate and reform at subsequent pericenter
passages. This process usually forms a two-armed, grand-design
pattern that can be approximated by logarithmic spirals. Using
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Fig. 6. Time evolution of the arm strength, |A(pn.x)| as blue line, and
surface density X, as red line made in orbit O4. Dashed lines are the
pericenter passages. Figure is adapted from Semczuk et al. (2017)
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Fig. 7. Time evolution of the pitch angle, @ using two different methods
of 1, and 2 in blue and red lines. Dashedlines are the pericenter passages.
Figure is adapted from Semczuk et al. (2017)

this, the surface distribution can be written as:

1
Alm.p)= 5= ) explitmg; + pInR))]
) ]

(28)

Where N; is the number of stars, (¢;, R;) are the polar coordi-
nates of the jth star, m is the number of spirals, and since the
resulted galaxy is mostly grand spirals; m = 2. p is a param-
eter related to pitch angle, and by finding the ppn,x that max-
imizes A(2, p) = A(p), they found the pitch angle (a) using
tan@ = 2/pmax. They also set 9kpc < R < 15kpc, since for
R < 9kpc, they observed the pitch angle to be 90°, meaning that
the bar was contaminating the result. |A(pmax)| can be thought of
as a parameter to measure the arms’ strength.

Semczuk et al. (2017) also used a secondary method to de-
termine the pitch angle by fitting logarithmic spirals directly
to the surface density distribution. Using least squared method,
¢ = BInR + C, the pitch angle was be found to be tana = 1/|B|.
Then after selecting points of maximum density at various radii
and fitting spirals to these points, the study confirms that Z,x =
2(Dpmax) has a similar evolution to |A(pmax)|, as can be seen in
Figure (6), they both get to a maximum value after the pericen-
ter passages and then their value decrease until the next passages.
Semczuk et al. (2017) noted that the peaks of the arms’ strength
happen around 0.5 Gyr after the pericenter passage. This is due
to the tidal features being the strongest in the outer parts of the
disk and needing some time for the effect to get to the inner part
and the ring, where the measurement is performed.

Also as shown in Figure (7), the pitch angle @ of the spiral
arms in a specific radial range decreases from o =~ 30° to be-
low @ =~ 10°, indicating that the arms wind up over time. They
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Fig. 8. The right pannel is the surface density maps of the simulated
galaxy modified to correspond to M91 galaxy. The right pannel is the
SDSS image of the M91 galaxy. Figure is adapted from Semczuk et al.
(2017)

also observed that the pitch angle peaks at the pericenter, which
demonstrates that the strongest arm formation happens shortly
after each passage and diminishes thereafter. Unlike the arm’s
strength, the maximums happen right after each passage.

Semczuk et al. (2017) measured the pattern speed of the spi-
ral arms using two methods; The first involves calculating the
cross-correlation of the perturbed surface density at different
times, while the second finds the maximum density at fixed radii
across different epochs. Both methods yield consistent results,
indicating that the pattern speed decreases with radius, which
suggests that it is not a quasi-stationary density wave, and it is
a kinematic density wave Semczuk et al. (2017). In general res-
onances is given as m(Q2 — Q,) = £%, with n = 1, for Lind-
blad resonances, and m = 2 for grand design spirals. As a result,
for a tidal-driven grand design spiral, the pattern speed will be
Q, = Q—«/2 for ILR, and Q, = Q + «/2 for OLR. (Toomre
1977). Semczuk et al. (2017) find the pattern speed to be close
to inner Lindblad resonance, confirming further arms are kinetic
density waves.

In the end Semczuk et al. (2017) made a Comparison with
Observations by comparing its findings with observed spiral
galaxies in the Virgo cluster. They identified nine galaxies that
do not show signs of interaction with satellites or other galax-
ies, ensuring that the observed spiral structures are likely due to
cluster tidal forces. The comparison reveals good agreement be-
tween the shapes and behaviors of the simulated and observed
spiral arms, as can be seen in Figure (8).

Many simulations over the years have proved the fact that
tidal interactions can very likely be responsible for grand-design
spirals that are near a companion, with M51 and M81 being the
clear examples of this phenomenon. However, we observe some
grand-design galaxies that are not in the vicinity of any other
companions. One solution that has been proposed is that maybe
dark matter subhalos could also be responsible, but this would
require multiple and non-disruptive passages of subhalos which
seems impossible (Sellwood & Masters 2022). As much as tidal
interactions are successful in explaining grand-design spirals, it
is unable to explain multi-armed or flocculent galaxies (Sem-
czuk et al. 2017). Regarding their lifetime, some simulations also
show that Tidal-driven spirals have a lifetime of 1Gyr, but taking
the fact that they go through repeated cycles of tidal interaction
(as observed in Semczuk et al. (2017)) into account, it can be
enough to explain the presence of m = 2 spirals in our universe
(Sellwood 2011).
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5. Spiral Arms: Long-Lived or Transient?

To create and sustain spirals, angular momentum needs to be
taken from the stars in the inner part and given to the stars in the
outer part which is done through the resonances. Transient spi-
rals are more effective at redistributing angular momentum be-
cause they involve broad, time-dependent resonances that affect
large parts of the galaxy, whereas long-lived spirals have narrow,
localized effects confined to specific resonances, which makes
them less influential in driving the internal evolution of galaxy
discs. The lifetime of spiral patterns determines how quickly and
effectively they can transport angular momentum, scatter stars
into different orbits, and mix the material within the galaxy.
Transient spirals, by being short-lived and recurring, are more
effective at driving these changes and thus have a greater impact
on the evolution of galaxy discs compared to long-lived, quasi-
steady patterns (Sellwood 2011).

Observational evidence from near-infrared photometric im-
ages like Schweizer (1976) does not provide conclusive evidence
on their lifetimes. The velocity distribution of stars in the Milky
Way suggests a preference for transient spiral patterns, since
studies such as Hipparcos mission (Dehnen 1998) show non-
circular motions and irregular velocity distribution suggesting
that the stellar motion have been influenced by short-lived spi-
rals. If the spirals were long-lived we would expect a more uni-
form velocity distribution (Binney & Tremaine 2008; Sellwood
2011).

Sellwood (2011) adopts a model from the BLLT survey,
which is similar to the model proposed by Fall & Efstathiou
(1980), that is a modified exponential disc model with a cen-
tral density dip and including a small pseudo-isothermal halo.
Sellwood & Carlberg (2014) ran two series of simulations: one
with only m = 2 disturbance forces (bisymmetric mode) and
another including higher sectoral harmonics with m varying be-
tween 2 and 8. The results showed that when only m = 2 dis-
turbance forces were allowed, the disc remained stable with no
significant non-axisymmetric features or heating over 40 disc
rotations. However, when higher harmonics were included, the
disc quickly developed multi-arm spiral patterns (as observed
in figure (9). The disc also underwent significant heating, indi-
cating that swing amplification of these higher harmonics led
to the observed spiral structures and increased random kinetic
energy in the disc. The reason for the different behavior is for
the swing amplification effectiveness parameter X (equation 16),
which lies between 1 and 2.5 for m > 4, leading to strong and
efficient amplification, while it has higher values than 2.5 for
m = 2. This suggested that the BLLT model’s predicted bisym-
metric spiral mode is not robust under realistic conditions (multi-
ple harmonic disturbances), implying that such spirals are likely
transient rather than long-lived.

The simulations by Sellwood (2011) demonstrate that galaxy
models, which are designed to support long-lived, bisymmetric
spiral modes, quickly develop short-lived, multi-arm spiral pat-
terns due to swing amplification. These transient patterns rapidly
heat the disc and alter the conditions necessary for sustaining
long-lived spirals. New stars are born in gas clouds, on nearly
circular orbits. Gas clouds as time goes by dissipate their random
motion through collisions. New stars being added to the disk at
arate of a few stars per year, "cools" the spirals, and allows it to
be responsive to perturbations. This is consistent with the obser-
vation that gas-rich galaxies often exhibit spiral patterns while
gas-poor SO galaxies do not (Sellwood 2011).

The spread in metallicities among stars of the same age can-
not be explained by simple chemical evolution models that lack

Fig. 9. Time evolution of BLT model for sectoral harmonics bigger than
2. Only one particle in 400 particles is plotted and the outer circle has
aradius of R = 6.5 with one rotation at R = 2 being 13 time units. The
figure is adapted from Sellwood (2011).

radial mixing. Instead, recurrent transient spiral patterns induce
radial churning, causing stars to migrate across the disc and lead-
ing to the observed metallicity spread. This process happens due
to the spirals being transient and recurrent, ensuring ongoing
mixing without significant heating of the disc (Sellwood 2011).

6. Conclusion

This review has explored the primary mechanisms behind the
formation and evolution of spiral arms in galaxies, and mainly
focusing on swing amplification, tidal and bar interactions. Af-
ter confirming the very fast winding up of the material arms, in-
spired by the idea of kinematic density waves, Lin & Shu (1964);
Kalnajs (1965); Lin & Shu (1966b) derived the LS dispersion
relation for fluids, and the LSK dispersion relation for a stellar
disc. Using the LS and LSK dispersion relations, Toomre’s pa-
rameter Q, as in equations (4) and (5) were derived respectively
as stability criteria (Shu 2016).

The swing amplification process was also introduced in this
review, that was developed by Toomre (1981). Swing Amplifi-
cation driven by differential rotation and self-gravity, is when a
short leading wave, is reflected to short trailing waves at the CR,
and its density is enhanced. Swing amplification relies on the
continuous regeneration of spiral arms through the interaction
of density waves with the galactic disc, causing a feedback loop
and has been shown to produce transient, multi-armed, or grand-
design spiral patterns (Toomre 1977). Briefly, after swing am-
plification, shearing sheets were introduced as a more compre-
hensive framework for when LSK dispersion relation fails due
to the spiral arms winding up and the failure of quasi-stationary
assumption (Binney 2020).

Tidal interactions with companion galaxies or dark matter
subhalos are another possible driver of spiral arm formation,
with M51 and M81 being two strong evidence for it. Tidal in-
teractions tend to produce grand-design spirals and are unlikely
to produce multi-armed spirals (Semczuk et al. 2017). Tidal in-
teractions cause transient spiral arms, with multiple passages and
the repeated cycle of forming spirals and unwinding (Sellwood
2011).

Bar interactions also can contribute to the formation of spiral
arms. Bar-driven spirals are mostly grand-design spirals with a
common pattern speed between the bar and the spiral. There also
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have been some discrepancies, either by finding multi-armed
barred galaxies, e.g. NGC 2336, and M 83, or by finding dif-
ferent pattern speed, e.g. NGC 1365, suggesting the bars can not
be the only factor in spiral formation (Sellwood & Masters 2022;
Huntley et al. 1978). Regarding their lifetime, Bar-driven spirals
are suspected to be long-lived patterns (Sellwood 2011).

While certain mechanisms, like bar interactions, suggest the
possibility of long-lived spiral patterns, the simulations by Sell-
wood (2011), showed the prevalence of transient spirals indi-
cated by swing amplification. He found that all long-lived grand-
design modes quickly turned into transient multi-armed spirals.
Observational evidence such as the lack of spiral arms in SO
galaxies, or radial mixing, further points into the transient pic-
ture of spirals (Sellwood 2011).

In conclusion, the formation and sustainability of spiral arms
in galaxies are governed by a combination of mechanisms that
can produce both long-lived and transient structures. The con-
tradictions between these mechanisms and the varying observa-
tional evidence highlight the complexity of spiral galaxy dynam-
ics and underscores the need for continued research to fully un-
derstand the nature of these fascinating cosmic features.
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